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Abstract— Many Embedded Systems are indeed Software
Based Control Systems, that is control systems whose controller
consists ofcontrol software running on a microcontroller device.
This motivates investigation on Formal Model Based Design
approaches for automatic synthesis of embedded systems con-
trol software. This paper addresses control software synthesis
for discrete time nonlinear hybrid systems. We present a
methodology to overapproximate the dynamics of a discrete
time nonlinear hybrid system H by means of a discrete time
linear hybrid systemLH, in such a way that controllers forLH
are guaranteed to be controllers forH. We present experimental
results on control software synthesis for the inverted pendulum,
a challenging and meaningful control problem.

I. I NTRODUCTION

Many Embedded Systemsare indeedSoftware Based
Control Systems(SBCSs). An SBCS consists of two main
subsystems: thecontroller and theplant, that together form
a closed loop system. Typically, the plant is a physical system
whereas the controller consists ofcontrol softwarerunning
on a microcontroller. Software generation from models and
formal specifications forms the core ofModel Based Design
of embedded software [16]. This approach is particularly
interesting for SBCSs since in such a case system level
specifications are much easier to define than the control
software behavior itself.

Regarding filtering, if any, as a part of the state sensing
process and assuming that the plant state is observable, the
typical control loop skeleton for an SBCS is the following.
In an endless loop, measurex of the system state from plant
sensorsgo through ananalog-to-digital (AD) conversion,
yielding a quantizedvalue x̂ to the control software. A
function ctrlRegion checks if x̂ belongs to the region in
which the control software works correctly. If this is not
the case, aFault Isolation and Recovery(FDIR) procedure
is triggered, otherwise a functionctrlLaw computes a com-
mandû to be sent to plantactuatorsafter adigital-to-analog
(DA) conversion, in order to guarantee that the closed loop
system meets givensafetyandlivenessspecifications (System
Level Formal Specifications). Basically, the control software
design problem for SBCSs consists in designing software
implementing functionsctrlLaw andctrlRegion.

Traditionally, the control software is designed using a
separation-of-concernsapproach. That is,Control Engineer-
ing techniques (e.g., see [6]) are used to designfunctional
specifications(control law) from the closed loop system level
specifications, whereasSoftware Engineeringtechniques are
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used to design control software implementing functional
specifications. Such a separation-of-concerns approach has
several drawbacks. For example, correctness of the control
software is not formally verified and issues concerning non-
functional requirements (such as computational resources,
control softwareWorst Case Execution Time, WCET), are
considered very late in the SBCS design activity and this
could lead to new iterations of the control design (e.g., if
the WCET is greater than the sampling time).

The previous considerations motivate research on methods
and tools focusing on control software synthesis. The objec-
tive is that from the plant model, from formal specifications
for the closed loop system behavior and fromImplementation
Specifications(that is, number of bits used in the quantization
process) such methods can generate correct-by-construction
control software satisfying the given specifications.

The tool QKS [19] has been designed following an SBCS
model based design approach. Given a plant modeled as a
Discrete Time Linear Hybrid System(DTLHS) QKS auto-
matically synthesises control software meeting given safety
and liveness closed loop specifications. The dynamics of a
DTLHS is modeled as a set oflinear constraintsover a set
of continuous as well as discrete variables describing system
state, system inputs and disturbances. Although the control
software synthesis problem for DTLHSs is undecidable [18],
the semi-algorithm implemented in QKS usually succeeds
in generating control software. However, the dynamics of
many interesting hybrid systems cannot be directly modeled
by linear constraints. This motivates the focus of the present
paper: control software synthesis fornonlinear Discrete Time
Hybrid Systems(DTHS).

We present a general approach tooverapproximate(that is
possibly allowing more behaviours than) a given DTHSH
by means of a DTLHSLH such that controllers forLH are
guaranteed to be controllers forH. Control software forH
is thus obtained by giving as input to the tool QKS [19] the
linear plant modelLH. SinceLH overapproximatesH, the
controllers that we synthesize are inherentlyrobust, that is
they meet the given closed loop requirementsnotwithstand-
ing nondeterministic smalldisturbances.

As in the linear case, the automatically generated control
software has a WCET guaranteed to be linear in the number
of bits of the state quantization schema and it implements
a (near)time optimalstrategy [10] to reach the goal for the
the closed loop system. We show the effectiveness of our
approach by presenting experimental results on the inverted
pendulum benchmark [17], a challenging and well studied
example in control synthesis.



A. Related Work
The paper closer to our is [17] which studies the problem

of control synthesis for discrete time (possibly nonlinear)
systems. However, while we present an automatic method,
the approach in [17] is not automatic since it requires the
user to provide a suitable Lyapunov function.

In [21] it is presented an automatic method that, tak-
ing as input a continuous time linear system and a goal
specification, produces a control law (represented as an
OBDD) through PESSOA [20]. In contrast, our contribution
focuses on (discrete time) possibly nonlinearhybrid systems
(DTHS). Furthermore, [21] does not supply an effective
method to generate control software and as a consequence it
does not give any guarantee on WCET.

Stemming from suitable symbolic models for nonlinear
control systems [22], a method to find overapproximations
of switched systemsis presented in [11]. In combination
with [21], such results provide a semi-automatic method for
finding a control law for nonlinear and switched systems.
However, we note that nonlinear systems in [22] are not
hybrid, since they cannot handle discrete variables, and ina
switched system as in [11] mode transitions can only depend
on control inputs, whereas in a hybrid system they can be
triggered also by state changes. Moreover, [21] combined
with [11] and [22] provides semi-automatic methods since
they rely on a Lyapunov function provided by the user, much
in the spirit of [17].

Verification and control law synthesis forLinear Hybrid
Automata(LHA) [1], [2] has been investigated in [2], [12],
[15], [24], [8], [23], [5]. Control law synthesis forPiecewise
Affine Discrete Time Hybrid Systems(PWA-DTHS) has been
investigated in [3], [4]. Explicit control synthesis algorithms
for discrete time hybrid systems have been studied in [7].
All such approaches do not account for quantization since
they all assumeexactstate measures. Thus, they do not offer
any formal guarantee about system level correctness of the
generated software, which is instead our focus here.

The tool QKS [19] synthesizes control software from
system level specifications for DTLHSs. Here, we address
control software synthesis for a more general class of dis-
crete time hybrid systems. The overapproximation of hybrid
systems with linear hybrid systems has been studied in [14],
[13]. Such works consider dense time models, and focus on
verification rather than control synthesis.

II. BACKGROUND

We denote with[n] an initial segment{1, . . . ,n} of the
natural numbers. We denote withX = [x1, . . . ,xn] a finite
sequence of distinct variables, that we may regard, when
convenient, as a set. Each variablex ranges on a known
bounded intervalDx either of the reals or of the integers
(discrete variables). Boolean variables are discrete variables
ranging on the setB = {0, 1}. We denote withDX the set
∏x∈XDx. To clarify that a variablex is continuous(resp. dis-
crete, boolean) we may writexr (resp.xd, xb). Analogously
Xr (Xd, Xb) denotes the sequence of real (integer, boolean)
variables inX. Finally, if x is a boolean variable we write ¯x
for (1−x).

A. Predicates

An expression E(X) over a set of variablesX is an expres-
sion of the form∑i∈[n]ai fi(X), wherefi(X) are possibly non
linear functions andai are rational constants. For example,
3sinx, 3

2 logxy, xy
, x are expressions over{x,y}. E(X) is

a linear expressionif it is a linear combination of variables
∑i∈[n]aixi , i.e. for all i, fi(X) = xi for somexi ∈ X. Observe
that our notion of linearity is merelysyntacticalmuch as
arithmetic expressions are in programming languages. For
example, for usx+ y is a linear expression, whilex+ y+
sinx− sinx is not, even though they “semantically” denote
the same function. Aconstraintis an expression of the form
E(X) ≤ b, whereb is a rational constant. Apredicate is a
logical combination of constraints. Aconjunctive predicate
is a conjunction of constraints. We also writeE(X) ≥ b for
−E(X) ≤ −b, E(X) = b for (E(X) ≤ b) ∧ (E(X) ≥ b), and
a≤ x≤ b for (x≥ a) ∧ (x≤ b). Given a constraintC(X) and a
boolean variabley/∈X, theguarded constraint y→C(X) (if y
thenC(X)) denotes the predicate(y= 0)∨C(X). Similarly,
ȳ→C(X) denotes(y = 1)∨C(X). A guarded predicateis
a conjunction of either constraints or guarded constraints.
A guarded predicate islinear if it contains only linear
expressions.

B. Control Problem for a Labeled Transition System

A Labeled Transition System(LTS) is a tupleS = (S,A,T)
whereS is a (possibly infinite) set of states,A is a (possibly
infinite) set ofactions, andT : S× A × S→ B is thetransition
relation of S. Let s∈ S and a ∈ A. The set Adm(S,s) = {a ∈
A ∣ ∃s′ ∶ T(s,a,s′)} is the set of actions admissible ins, and
Img(S,s,a) = {s′ ∈ S ∣ T(s,a,s′)} is the set of next states
from s via a. A run or path for an LTS S is a sequence
π = s0,a0,s1,a1,s2,a2, . . . of statesst and actionsat such
that ∀t ≥ 0 T(st ,at ,st+1). The length∣π∣ of a finite run π
is the number of actions inπ. We denote withπ(S)(t) the
(t +1)-th state element ofπ, and with π(A)(t) the (t +1)-
th action element ofπ. That is π(S)(t) = st , andπ(A)(t) =
at . Given two LTSsS1=(S, A, T1) andS2=(S, A, T2), we
say thatS2 overapproximatesS1 (notationS1 ⊑ S2) when
T1(s,a,s′) implies T2(s,a,s′) for all s,s′ ∈ S anda ∈ A. Note
that ⊑ defines a partial order over LTSs.

A controller restricts the dynamics of an LTS so that
all states in a given initial region will eventually reach a
given goal region. We formalize such a concept by defining
solutions to an LTS control problem. In what follows, let
S = (S,A,T) be an LTS,I , G ⊆ S be, respectively, theinitial
andgoal regions ofS. A controller for S is a functionK ∶S×
A→B such that∀s∈S, ∀a ∈A, if K(s,a) then∃s′ T(s,a,s′).
The set dom(K) = {s∈ S∣ ∃a K(s,a)} is the set of states for
which at least a control action is enabled. Theclosed loop
systemS(K) is the LTS(S,A,T(K)), whereT(K)(s,a,s′) =
T(s,a,s′)∧K(s,a). We call a pathπ fullpath if either it
is infinite or its last stateπ(S)(∣π∣) has no successors. We
denote with Path(s,a) the set of fullpaths starting in states
with actiona. Given a pathπ in S, we definej(S,π,G) as
follows. If there existsn>0 s.t.π(S)(n) ∈G, then j(S,π,G)=
min{n ∣ n> 0∧π(S)(n) ∈G}. Otherwise,j(S,π,G) = +∞. We



Fig. 1: Inverted Pendulum with Stationary Pivot Point.

requiren> 0 since our systems are non-terminating and each
controllable state (including a goal state) must have a path
of positive length to a goal state. Taking sup∅ = +∞ the
worst case distanceof a states from the goal regionG is
J(S,G,s) = sup{ j(S,π,G) ∣ a ∈ Adm(S,s), π ∈ Path(s,a)}.
A control problemfor S is a tripleP = (S, I ,G). A solution
to P is a controllerK for S such thatI ⊆ dom(K) and for
all s∈ dom(K), J(S(K),G,s) is finite. An optimal solution
to P is a solutionK∗ to P s.t. for all solutionsK to P , for
all s∈DX we haveJ(S(K

∗)
,G,s) ≤ J(S(K),G,s).

III. D ISCRETETIME HYBRID SYSTEMS

In this section we introduce our class ofDiscrete Time Hy-
brid Systems(DTHS), together with the DTHS representing
the inverted pendulum on which our experiments will focus.
Moreover, we will define theQuantized Control Problem.

Definition 1: A Discrete Time Hybrid Systemis a tuple
H = (X, U, Y, N) where:

X = Xr ∪Xd is a finite sequence of real (Xr ) and discrete
(Xd) present statevariables. The sequenceX′ of next state
variables is obtained by decorating with′ all variables inX.

U =U r ∪Ud is a finite sequence ofinput variables.
Y = Yr ∪Yd is a finite sequence ofauxiliary variables.
N(X,U,Y,X′) is a guarded predicate overX∪U ∪Y∪X′

defining thetransition relationof the system.
A Discrete Time Linear Hybrid System(DTLHS) is a

DTHS whose transition relationN is linear.
Input variables modelcontrollable inputs, whereas auxil-

iary variables modeluncontrollable inputs, i.e. disturbances.
We do not have output variables since we focus on systems
whose state is fully observable.

The semantics of a DTHSH is given in terms of the
labeled transition system LTS(H) = (DX, DU , Ñ) where:
Ñ ∶ DX × DU × DX → B is a function s.t.Ñ(x,u,x′) ≡ ∃y ∈
DY ∶N(x,u,y,x′) (observe that ifY is empty thenÑ is justN
since no existentialization takes place). We say that DTHS
H2 overapproximatesDTHSH1 when LTS(H1)⊑LTS(H2).

Example 1:Let us consider a simple inverted pendu-
lum [17], as shown in Fig. 1. The system is modeled by
taking the angleθ and the angular velocitẏθ as state
variables. The input of the system is the torquing forceu,
that can influence the velocity in both directions. Moreover,
the behaviour of the system depends on the pendulum mass
m, the length of the penduluml and the gravitational accel-
erationg. Given such parameters, the motion of the system
is described by the differential equationθ̈ = g

l sinθ+ 1
ml2

u.
In order to obtain a state space representation, we consider

the following normalized system, wherex1 is the angleθ and

x2 is the angular speeḋθ.

ẋ1 = x2 ẋ2 =
g

l
sinx1+

1
ml2

u (1)

The DTHS modelH for the pendulum is the tuple
(X,U,Y,N), whereX = {x1,x2} is the set of continuous state
variables,U = {u} is the set of input variables, andY = ∅.
Differently from [17], we consider the problem of finding
a discrete controller, whose decisions may be “apply the
force clockwise” (u= 1), “apply the force counterclockwise”
(u= −1)”, or “do nothing” (u= 0). The intensity of the force
will be given as a constantF. Finally, the discrete time
transition relationN is obtained from the equations in (1)
as the Euler approximation with sampling timeT, i.e. the
predicate(x′1 = x1+Tx2) ∧ (x′2 = x2+T g

l sinx1+T 1
ml2

Fu).
Example 2:Disturbances can be modeled by using aux-

iliary variables as uncontrollable inputs. For example, let
us consider the DTLHSH1 = (X,U,Y1,N1) with: X = {x},
U = {u}, Y1 = ∅ and N1(X,U,Y1,X′) = {x′ = 3x+ u}. Let
H2 = (X,U,Y2,N2) with: Y2 = {d} (e.g., withDd = [−1,1])
and N2(X,U,Y2,X′) = {x′ = 3x+ u+ d}. Then H2 models
disturbances withinH1 ranging in the real interval[−1,1].
Note thatH2 overapproximatesH1 since any trajectory of
H1 is also a trajectory ofH2.

A. Quantized Control Problem for DTHSs

A DTHS control problem(H, I ,G) is defined as the LTS
control problem (LTS(H), I , G). To manage real variables,
in classical control theory the concept ofquantization is
introduced (e.g., see [9]). Quantization is the process of ap-
proximating a continuous interval by a set of integer values.
A quantization functionγ for a real intervalI = [a,b] is a non-
decreasing functionγ ∶ I ↦ Z s.t. γ(I) is a bounded integer
interval. We extend quantizations to integer intervals, by
stipulating that in such a case the quantization function isthe
identity function. Given a DTHSH = (X,U,Y,N), a quanti-
zationΓ is a set of quantization functionsΓ={γw ∣ w∈X∪U}.
If W = [w1, . . .wk] is a list of variables andv = [v1, . . .vk] ∈
DW, we write Γ(v) for the tuple[γw1(v1), . . .γwk(vk)].

Example 3: In our experiments we use uniform quanti-
zation functions dividing the domain of each state variable
Dx1 = [−1.1π,1.1π] (we write π for a rational approximation
of it) and Dx2 = [−4,4] into 2b equal intervals, whereb is
the number of bits used by AD conversion. Since we have
two quantized variables, each one withb bits, the number of
quantized states is exactly 22b.

A control problem admits aquantizedsolution if control
decisions can be made by just looking at quantized values.
This enables a software implementation for a controller.

Definition 2: Let H = (X,U,Y,N) be a DTHS,Γ be a
quantization forH and P = (H, I ,G) be a DTHS control
problem. A Γ Quantized Feedback Control(QFC) solution
to P is a solutionK(x,u) to P s. t. there existŝK ∶Γ(DX)×
Γ(DU) → B such thatK(x,u) = K̂(Γ(x),Γ(u)).

Example 4:The typical goal for the inverted pendulum
in Ex. 1 is to turn the pendulum steady to the upright
position, starting from any possible initial position, within
a given speed interval. In our experiments, the goal region is



defined by the predicateG(X)≡ (−ρ≤ x1≤ρ) ∧ (−ρ≤ x2≤ρ),
whereρ ∈ {0.05,0.1}, and the initial region is defined by the
predicateI(X) ≡ (−π ≤ x1 ≤ π) ∧ (−4≤ x2 ≤ 4).

IV. L INEAR OVERAPPROXIMATION OFDTHSS

The tool QKS [19], given a DTLHS control problemP =
(H, I ,G) and a quantization schema as input, yields as output
control software implementing an optimal quantized con-
troller for P , whenever a sufficient condition holds. In this
section we show how a DTHSH can be overapproximated
by a DTLHSLH, in such a way that LTS(H) ⊑ LTS(LH).
Corollary 3 ensures that controllers forLH are guaranteed
to be controllers forH.

A. DTHS linearization
Let C(V), with V ⊆ X ∪U ∪Y ∪X′, be a constraint in

N that contains a nonlinear function as a subterm. Then
C(V) has the shapef (R,W) +E(V) ≤ b, where R⊆ Vr is
a set ofn real variables{r1, . . . ,rn}, andW ⊆Vd is a set of
discrete variables. For eachw ∈DW, we define the function
fw(R) obtained from f , by instantiating discrete variables
with w, i.e fw(R) = f (R,w). ThenC(V) is equivalent to the
predicate⋀w∈DW[ fw(R)+E(V) ≤ b]. In order to make the
overapproximation tighter, we partition the domainDR of
each functionfw(R) into m hyperintervalsI1, I2 . . . Im, where
Ii = Π j∈[n][a

i
j ,b

i
j]. In the following R ∈ Ii will denote the

conjunctive predicate⋀ j∈[n]a
i
j ≤ r j ≤ bi

j .
Let f+w,i(R) and f−w,i(R) be over- and under- linear approx-

imations of fw(R) over the hyperintervalIi , i.e. such that
R∈ Ii implies f−w,i(R) ≤ fw(R) ≤ f+w,i(R). Taking ∣DW ∣×n fresh
continuous variablesY = {yw,i}w∈DW,i∈[n] and ∣DW∣×n fresh
boolean variablesZ = {zi}w∈DW,i∈[n], we define the guarded
predicateC̄(V,Y,Z):

⋀w∈DW⋀i∈[m][yw,i +E(V) ≤ b]
∧⋀w∈DW⋀i∈[m] zw,i → f−w,i(R) ≤ yw,i ≤ f+w,i(R)
∧⋀w∈DW⋀i∈[m] zw,i →R∈ Ii ∧⋀w∈DW∑i∈[m] zw,i ≥ 1

This transformation eliminates a nonlinear subexpression
of a constraintC(V) and yields a constraint̄C(V,Y,Z)
such that∃Y,Z[C̄(V,Y,Z)⇒ C(V)]. Given a DTHSH =
(X,U,Y,N), without loss of generality, we may sup-
pose that the transition relationN is a conjunction
⋀i∈[m]Ci(X,U,Y,X′) of constraints. By applying the above
transformation to each nonlinear subexpressions occurring
in N, we obtain a conjunction of linear constraints̄N ≡
⋀i∈[m̄]C̄i(X,U,Ȳ,X′), such thatN̄⇒N. Hence, starting from
a DTHS H, we find a DTLHSLH = (X,U,Ȳ,N̄), whose
dynamics overapproximate the dynamics ofH.

Theorem 1:Let H = (X,U,Y,N) be a DTHS and letLH
be its linearization. Then we have that LTS(H) ⊑ LTS(LH).

Theorem 2:Let S1 = (S,A,T1) andS2 = (S,A,T2) be two
LTSs, and letK be a solution for the LTS control prob-
lem (S2, I ,G). If S1 ⊑ S2 and for all s ∈ S Adm(S1,s) =
Adm(S2,s), thenK is a solution also for(S1, I ,G).

Corollary 3: Let H = (X,U,Y,N) be a DTHS and letLH
be its linearization. LetK be a solution for the DTLHS
control problem(LH, I ,G). Then K is a solution also for
the DTHS control problem(H, I ,G).

-3,2 -2,4 -1,6 -0,8 0 0,8 1,6 2,4 3,2

-1,6

-0,8

0,8

1,6

I1 I2

I3 I4

f+

4 (x)

f−

1
(x)

f+

3
(x)

f−

2
(x)

Fig. 2: Linearization of sinx in [−π,π].

Example 5:The DTHS modelH for the inverted pen-
dulum in Ex. 1 contains the nonlinear function sinx1. We
define the linearizationLH = (X,U,Y,Ñ) as follows. In
order to exploit sinus periodicity, we consider the equation
x1 = 2πyk + yα, where yk represents the period in which
x1 lies and yα ∈ [−π,π] represents the actualx1 inside a
given period. This allows us to apply our linearization to
yα ∈ [−π,π] only. We partition the interval[−π,π] into
four sub-intervalsI1, I2, I3, I4 as shown in Fig. 2. For
yα ∈ I1 = [−π,−π

2] we define f+1 (yα) as the line passing
through points(−π,sin(−π)) and(−π

2 ,sin(−π
2)), i.e. f+1 (yα)

= −0.6369yα + 2. Moreover, we definef−1 (yα) as the line
which is tangent to the curve sinyα at I1 medium point,
i.e. f−1 (yα) = 0.7073(yα+0.785)−0.7068. Functionsf±2 , f±3
and f±4 are obtained analogously. Finally, we have thatY =
Yd∪Yr = {yk,yq,z1,z2,z3,z4}∪{yα} andÑ ≡ (x′1 = x1+2πyq+
Tx2) ∧ (x′2 = x2+T g

l yα+T 1
ml2

Fu)∧x1 = 2πyk+yα∧⋀
4
i=1zi →

f−i ≤ yα ≤ f+i ∧⋀
4
i=1zi → x1 ∈ Ii ∧∑

4
i=1zi ≥ 1.

B. Linearization: a systematic approach
When nonlinear subexpressions areC2 functions, a sys-

tematic approach to compute linear overapproximations of
a DTHS makes use of Taylor polynomial of degree 1 as
piecewise affine functions that over- and under-approximate
the value of aC2 function. Let f (x) be aC2 function of n
real variables over a given intervalI . By Taylor’s theorem,
we may derivelinear under- and over-approximations for
f (x) around a given pointx0 ∈ I as follows. Namely, we
have that there existst ∈ [0,1] such that f (x) = f (x0) +
▽ f (x0)(x−x0)+

1
2(x−x0)

TH(x+ t(x−x0))(x−x0), beingH
the Hessian matrix off . If we know two real numbersm
and M that are the minimum and the maximum value of
1
2(x−x0)

TH(x+ t(x−x0))(x−x0), in a given interval around
x0 we can choosef+(x) = f (x0)+▽ f (x0)(x− x0)+M and
f−(x) = f (x0)+▽ f (x0)(x−x0)+m.

V. EXPERIMENTAL RESULTS

In this section we present our experiments that aim at
evaluating effectiveness of our linearization technique.We
present experimental results obtained by using QKS [19] on
the inverted pendulum described in Ex. 1. In order to let
QKS handle such a case study, we linearize the DTHSH in
Ex. 1 with the DTLHSLH of Ex. 5. In all our experiments,
as in [17] we set parametersl and m in such a way that
g
l = 1 (i.e. l = g) and 1

ml2
= 1 (i.e. m= 1

l2
). The quantization

Γ is as in Ex. 3. The initial regionI and goal regionG are
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as in Ex. 4, thus the DTHS [DTLHS] control problem we
consider isP = (H, I , G) [(LH, I , G)].

We run QKS for different values of the remaining pa-
rameters, i.e.F (force intensity), ρ (goal tolerance),T
(sampling time), andb (number of bits of AD). For each
of such experiments, QKS outputs a control softwareK in
C language. In the following, we sometimes make explicit
the dependence onF and b by writing K(b)F . In order to
evaluate performance ofK, we use aninverted pendulum
simulatorwritten in C. The simulator computes the next state
by using Eq. (1) of Ex. 1, thus simulating a path ofH(K).
Such simulator also introduces random disturbances (up to
4%) in the next state computation to assessK robustness
w.r.t. non-modelled disturbances. Finally, in the simulator
Eq. (1) is translated into the discrete time version by means
of a simulation time stepTs much smaller than the sampling
time T used inH (and LH). Namely, Ts = 10−6 seconds,
whilst T = 0.01 or T = 0.1 seconds. This allows us to have a
more accurate simulation. Accordingly,K is called each 104

(or 105) simulation steps ofH. When K is not called, the
last chosen action is selected again (sampling and holding).

All experiments have been carried out on an Intel(R)
Xeon(R) CPU @ 2.27GHz, with 23GiB of RAM, Debian
GNU/Linux 6.0.3 (squeeze).

A. Underactuated Inverted Pendulum (F= 0.5)
To stabilize anunderactuatedinverted pendulum (i.e.

F < 1) from the hanging position to the upright position, a
controller needs to find a non obvious strategy that consists
of swinging the pendulum once or more times to gain enough
momentum. QKS is able to synthesize such a controller
taking as inputLH with F = 0.5 (note that in [17]F = 0.7).
Results are in Tab. I, where each row corresponds to a QKS
run, columnsb, T and ρ show the corresponding inverted
pendulum parameters, column∣K∣ shows the size of the
C code forK(b)0.5 , and columns CPU and MEM show the
computation time (in seconds) and RAM usage (in KB)
needed by QKS to synthesizeK(b)0.5 .

As for K(b)0.5 performance, it is easy to show that by
reducing the sampling timeT and the quantization step (i.e.
increasingb), we increase the quality ofK(b)0.5 in terms of
ripple and set-up time. Fig. 4 and 5 show the simulations

of H(K
(9)
0.5 ) andH(K

(10)
0.5 ). As we can see,K(10)

0.5 drives the
system to the goal with a smarter trajectory, with one swing
only. This have a significant impact on the set-up time (the
system stabilizes after about 8 seconds when controlled by
K(10)

0.5 instead of about 10 seconds required when controlled

by K(9)0.5 ). Fig. 3 shows that dom(K(9)0.5 ) covers almost all
states in the admissible region that we consider. Different
colors mean different set of actions enabled by the controller.

Finally, Fig. 7 shows the ripple ofx1 for H(K
(10)
0.5 ) inside the

goal. Note that such ripple is very low (0.018 radiants).

B. Very Underactuated Inverted Pendulum (F= 0.3)

We succeeded to find controllers for the inverted pendulum
for any value ofF down to 0.3, with T = 0.1 seconds and
ρ = 0.1. However, simulations show that the behaviour of
the resulting closed loop system is somewhat puzzling. As

it is shown in Fig. 8 forH(K
(11)
0.3 ), after three swings the

pendulum is correctly driven to the goal, but at that point the
controller is not able to maintain the plant inside the goal.In
fact, the controller let the pendulum fall and makes it do a
complete round in order to reach again the upright position.
This behaviour is repeated 27 times, before theK(11)

0.3 makes
pendulum stabilize into the goal region.

As already noted in [17], all controllers for underactuated
pendulum use two very different strategies to stabilize the
system depending on the initial state. When the angle is
positive and the speed is negative (and in a suitable range that
depends onF), the controller turns directly the pendulum into
the upright position. Symmetrically, this also happens when
the angle is negative and the speed is positive. Otherwise
the controller lets the pendulum fall down to gain enough
momentum (or to smoothly slow down it). Therefore, starting
from very close states may lead the system to follow very
different trajectories. ReducingF squeezes the region of
states from which the pendulum is directly turned into the
upright position. As Fig. 9 shows, whenF is equal to 0.3,
we have a rather pathological situation: the frontier between
the two strategies liesinside the goal region. The controller
sometimes is unable to keep the system inside the goal,
because disturbances introduced by the simulator make the
system cross the frontier between the two strategies. When
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TABLE I: Experimental Results for inverted pendulum withF =0.5.

b T ρ ∣K∣ CPU MEM

8 0.1 0.1 2.73e+04 2.56e+03 7.72e+04
9 0.1 0.1 5.94e+04 1.13e+04 1.10e+05
10 0.1 0.1 1.27e+05 5.39e+04 1.97e+05
11 0.01 0.05 4.12e+05 1.47e+05 2.94e+05

this frontier lies far enough from the goal (see Fig. 10 for
the caseF = 2), this phenomenon is essentially harmless and
leads, at worst, to suboptimal strategies.

C. Overactuated Pendulum (F= 2)
WhenF is greater than 1, finding a control strategy is less

challenging. It is worth noting however that, even in this case,
our approach allows us to find controllers that hardly can be
synthesized by means of traditional analytical methods. In

Fig. 6, we show trajectories in the phases space ofH(K
(11)
2 )

with T = 0.01 seconds,ρ = 0.05, and starting values forx1

are in{ π
4,

π
2 ,

3π
4 ,3} andx2 = 0. H(K

(11)
2 ) follows highly non-

smooth trajectories:K(11)
2 drives the system along an optimal

approach to the goal. Before joining this ideal path to the
goal, the controller, in order to optimize the set up time,
drives the system at the maximum possible “cruising” speed
that allows the pendulum to be stopped in the goal. For higher
values ofF , this cruising speed is even higher.

VI. CONCLUSIONS

We presented an automatic methodology to synthesize
control software for nonlinear Discrete Time Hybrid Sys-
tems. The control software is correct-by-construction with re-
spect both System Level Formal Specifications of the closed
loop system and Implementation Specifications, namely the
quantization schema. Our experimental results on the in-
verted pendulum benchmark show the effectiveness of our
approach and that we synthesize near optimal controllers
that hardly can be designed by using traditional analytical
methods of Control Engineering.

The present work can be extended in several directions.
First of all, it would be interesting to consider control
synthesis of controllers that are optimal with respect to a
cost function given as input of the control problem, rather
than simply time-optimal. Second, it would be interesting
to extend our approach to CTL specifications, rather than
just liveness and safety properties. Finally, a natural possible
future research direction is to investigate DTHS control
software synthesis when the state is not fully observable.
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