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Abstract. The Model Based Design approach for Hybrid Systems con-
trol software synthesis is particularly appealing since Formal System
Level Specifications are usually much easier to define than the control
software itself. In this setting, Design Space Exploration has the goal to
find a suitable (with respect to costs and performance) choice for system
design parameters. Unfortunately, a substantial part of the time devoted
to design space exploration is spent trying to solve control software syn-
thesis problems that do not have a solution. We present an on-the-fly al-
gorithm to control software synthesis that enables effective design space
exploration by speeding-up termination when no controller is found. Our
experimental results show the effectiveness of our approach and how it
can support a concrete realizability and schedulability analysis.

1 Introduction

A Software Based Control System (SBCS) consists of two main subsystems,
the controller and the plant that together form the closed loop system. In an
endless loop, every T seconds (sampling time), output y from plant sensors go
through an analog-to-digital (AD) conversion, yielding a quantized value ŷ to
the control software implementing the control law. The control software then
computes the command û to be sent (after a digital-to-analog (DA) conversion)
to plant actuators in order to guarantee that the closed loop system satisfies
given safety and liveness specifications (System Level Formal Specifications).

Traditionally, the control software is designed using a separation-of-concerns
approach. That is, Control Engineering techniques (e.g., see [10]) are used to
design functional specifications (control law) from the closed loop system level
specifications, whereas Software Engineering techniques are used to design con-
trol software implementing functional specifications.

Motivations In SBCS design the interface between Control Engineering and
Software Engineering activities is basically summarized by the choice of: 1) con-
trol law, 2) number of quantization bits b, 3) sampling time T . Taking into
account that a SBCS is a real-time system, the control software Worst Case
Execution Time (WCET) must be less than or equal to T . As a result we have
contrasting requirements on the choice of design parameters b and T . Namely,
typically performance (e.g., set-up time and ripple) of the closed loop system
improves as b increases or T decreases. On the other hand, hardware/software
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costs decrease when b decreases or T increases (e.g., a faster processor is needed
in order to guarantee that the control software WCET is less than T ).

In our context, one of the main goals of Design Space Exploration is to find a
suitable (with respect to costs and performance) choice for design parameters b

and T . The current approach is to define (using Control Engineering techniques)
a control law along with values for b and T and then to devise (using Software
Engineering techniques) a software implementation for it. Once the software is
implemented, its realizability its schedulability must be evaluated. Namely, the
software is realizable if it fits in the microcontroller flash memory. Moreover, it
is schedulable if its WCET is smaller of the sampling time and small enough to
make feasible the schedulability of other periodic processes (as reading quantized
values from plant sensors) that run on the same microcontroller (see e.g. [15]
for a more-in-depth discussion). Performance of the closed loop system is then
evaluated using Hardware In the Loop Simulation (e.g., nicely supported by
Model Based tools like Simulink [20] or Reactis [34]).

One may wish to partially automate design space exploration by using tools
like QKS [25] that from the plant model, system level formal specifications for the
closed loop system and implementation parameters (namely, number of quan-
tization bits), automatically synthesize correct-by-construction control software
meeting the given requirements and with a guaranteed WCET. We note that,
for many choices of the design parameters b and T , QKS fails to find control
software solving the synthesis problem. As a result, a substantial part of the time
devoted to design space exploration will be spent trying to solve control soft-
ware synthesis problems that do not have a solution. Unfortunately the control
software synthesis algorithm presented in [25] takes about the same time both
when it finds a solution and when it cannot find one.

This paper investigates control software synthesis algorithms that can sup-
port design space exploration by detecting as soon as possible when a solution
to the synthesis problem cannot be found.

Our Contributions We model the plant as a Discrete Time Linear Hybrid
System (DTLHS), that is a (discrete time) hybrid system whose dynamics is
modeled with linear constraints over a set of continuous as well as discrete vari-
ables. Safety and liveness specifications for the closed loop system are defined
as linear constraints on state variables. A DTLHS H approximates a continuous
time system dynamics by sampling it only at discrete time points multiple of a
time step τ chosen on the base of physical considerations. Building on this we
can approximate the dynamics of a system sampled each T = nτ seconds by it-
erating n times the dynamics of H. Using such an approach we can investigate in
our DTLHS framework existence of a controller for H for different configurations
of b and T = nτ . Our main contributions can be summarized as follows.

On-the-fly control software synthesis algorithm. We present an on-the-fly al-
gorithm for DTLHS control software synthesis, in the same spirit of on-the-fly
Model Checking [19]. Such an approach enables effective design space explo-
ration by speeding-up termination of the control software synthesis algorithm in
the typical case occurring in the design space exploration phase, namely when
no controller is found for the given configuration parameters (b, T ).
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Experimental results. We implemented our algorithm within the QKS

tool [25]. To assess the effectiveness of our approach we present results on its
usage for design space exploration of control software for the inverted pendulum,
a challenging and widely studied example (e.g., see [22]). We carry out such a
design space exploration using both the on-the-fly algorithm presented here and
the synthesis algorithm presented in [25]. We have considered 18 choices for the
design parameters b and T , 10 of which return a control software. Our experi-
mental results (Sect. 6) show that, using our on-the-fly algorithm we have a time
saving of nearly 80%. Finally, we show how our Model Based Design approach
can effectively support a concrete realizability and schedulability analysis on a
specific family of microcontrollers.

Related Work Model based design space exploration for embedded systems
(typically modeled as Hybrid Systems [5]) has been widely studied in the last
decades. Many tools and paradigms have been proposed to support designers in
this phase. For example, see [6] and citations thereof for a formal (using UP-
PAAL [17]) model based tool and a survey on available tools. In this respect
we note that all proposed methods focus on designing the software/hardware
system once the control law is given and, in particular, once b (number of quan-
tization bits) and T (sampling time) are given. To the best of our knowledge
none of them supports trading between Control Engineering wishes (large b and
small T ) and System/Software Engineering wishes (small b and large T ) before
the control law is designed. In such a framework our contribution complements
the available approaches by enabling trade-offs between the control law, b and
T before the control law is designed.

The sampling time T is one of the main requirements to take into account for
schedulability analysis. In [24] is proposed a scheduling algorithm that cleverly
trades, at run time, T (by delaying execution of control software) and closed
loop performances. The main difference with our contribution is that in [24] the
control law and b are both given whereas our approach enables exploring (off-
line) the possibility of changing any of them in order to increase T . It is worth
noticing that indeed the approach in [24] could be used to further increase (at
run time) the T resulting from our control software synthesis method.

We check performance of the closed loop system after control software syn-
thesis. Methods to synthesize control laws satisfying given performance indexes
on the closed loop system have been investigated, for example, in [21]. We differ
from such work since our plant model is a DTLHS rather than a multi-modal
system for [21].

Automatic synthesis of software from models has also been widely studied.
For example, see [23] and citations thereof. We differ from such approaches
since our starting point is the plant model and closed loop specifications for
the closed loop system whereas model based software generation (e.g., as the
one also available in tools like Simulink) starts from a model based definition
(e.g., using Stateflow/Simulink diagrams) of the control law and then generates
a software implementation for such a control law model.

Control software synthesis from formal system level specifications for Discrete
Time (possibly non Linear) Hybrid Systems has been investigated in [25, 26, 3,
2]. The on-the-fly algorithm presented here improves on the one in [25, 26] by
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reducing of about 99% the time to terminate when it cannot find a controller,
possibly at a price of a 25% time penalty when it can find one. This, in turn,
enables, formal model based design space (i.e.: control law, b, T ) exploration.

On-the-fly algorithms for the analysis of Timed Games has been proposed
in [12]. Our backward algorithm has to handle linear constraints where both
continuous and discrete state variables may appear. In fact, we need to solve
many MILP problems to back-propagate a state region. This is quite different
from the class of Timed Automata considered in [12], where constraints have the
form x ∼ k, where x is a clock and ∼ is one of <,≤,≥, >,=.

In [31] it is presented a semi-automatic method that, taking as input a con-
tinuous time linear system and a goal specification, produces a control law (rep-
resented as an OBDD) through Pessoa [30, 35]. Such an approach differs from
ours as follows. First, our method is fully automatic whereas the one in [31] is
not, since it relies on a user provided Lyapunov function, much in the spirit of
[22]. Second, [31] does not provide any guarantee on the WCET of the generated
software, thus it cannot be used for design space exploration in our context.

Verification and control law synthesis for Linear Hybrid Automata (LHA) [4]
has been investigated, e.g., in [18, 38, 16, 9]. Control law synthesis for Piecewise
Affine Discrete Time Hybrid Systems (PWA-DTHS) has been investigated in [7,
8]. All such approaches, when dealing with control synthesis, do not account for
state feedback quantization since they all assume exact (i.e. real valued) state
measures and do not generate control software with a guaranteed WCET. As a
result they cannot be used for design space exploration in our context, where
the number of AD bits b and the software WCET play a crucial role.

2 Background

We denote with [n] an initial segment {1, . . . , n} of the natural numbers. We
denote with X = [x1, . . . , xn] a finite sequence of variables. We may regard X

as a set when convenient. Each variable x ranges over a bounded or unbounded
interval Γx, being either Γx ⊆ R or Γx ⊆ Z. We say that Γx is a typing for x and
ΓX =

∏

x∈X Γx is a typing for X. If, for all x ∈ X, Γx is a bounded interval, we
say that ΓX is a bounded typing for X.

Predicates A linear expression L(X) over a list of variables X is a linear
combination of variables in X with rational coefficients,

∑

xi∈X aixi. A lin-
ear constraint over X (or simply a constraint) is an expression of the form
L(X) ≤ b, where b is a rational constant. Predicates are inductively defined
as follows. A constraint C(X) is a predicate. If A(X) and B(X) are predicates
then (A(X) ∧ B(X)) and (A(X) ∨ B(X)) are predicates. Parentheses may be
omitted, assuming usual associativity and precedence rules of logical operators.
A conjunctive predicate is a conjunction of constraints. For conjunctive predi-
cates we will also write: L(X) ≥ b for −L(X) ≤ −b, L(X) = b for ((L(X) ≤ b)
∧ (L(X) ≥ b)), and a ≤ x ≤ b for x ≥ a ∧ x ≤ b, where x ∈ X.

A valuation over a list of variables X is a function v that maps each variable
x ∈ X to a value v(x) ∈ Γx. Given a valuation v, we denote with X∗ ∈ ΓX the
sequence of values [v(x1), . . . , v(xn)]. By abuse of language, we call valuation also
the sequence of values X∗. A satisfying assignment to a predicate P over X is a
valuation X∗ such that P (X∗) holds. If a satisfying assignment to a predicate P
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over X exists, we say that P is feasible. Abusing notation, we may denote with P

the set of satisfying assignments to the predicate P (X). A variable x ∈ X is said
to be bounded in P if there exist a, b ∈ Γx such that P (X) implies a ≤ x ≤ b. A
predicate P is bounded if all its variables are bounded.

Given a constraint C(X) and a fresh boolean variable (guard) y 6∈ X, the
guarded constraint y → C(X) (if y then C(X)) denotes the predicate ((y = 0)∨
C(X)). Similarly, we use ȳ → C(X) (if not y then C(X)) to denote the predicate
((y = 1) ∨ C(X)). A guarded predicate is a conjunction of either constraints
or guarded constraints. If a guarded predicate P is bounded, then P can be
transformed into a (bounded) conjunctive predicate [27].

A linear predicate P (X) is a (guarded) predicate or an expression of form

∃Z ∈ ΓZ P̃ (X,Z), where P̃ (X,Z) is a (guarded) predicate and Z is set of

auxiliary variables. Note that, if P̃ (X,Z) is bounded, then P (X) is also bounded.

Mixed Integer Linear Programming A MILP problem with decision vari-
ables X is a tuple (max, J(X), A(X)) where: X is a list of variables, J(X)
(objective function) is a linear expression on X, and A(X) (constraints) is a
conjunctive predicate on X. A solution to (max, J(X), A(X)) is a valuation
X∗ such that A(X∗) and ∀Z (A(Z) → (J(Z) ≤ J(X∗))). J(X∗) is the op-
timal value of the MILP problem. A feasibility problem is a MILP problem
of the form (max, 0, A(X)). We write also A(X) for (max, 0, A(X)). We write
(min, J(X), A(X)) for (max,−J(X), A(X)).

Moore Automata A Nondeterministic Moore Automaton (NMA) [13] is a
tuple M = (S,A,O, T,Ω) where: S is a set of states, A is a set of actions, O is
a set of outputs, T : S × A × S → B is the transition relation of M, and Ω : S
× O → B is the output predicate, such that ∀s ∈ S ∃o ∈ O Ω(s, o) (there is an
output for each state). In the following, let s ∈ S, a ∈ A and o ∈ O.

The set of actions enabled in s is denoted by En(M, s) = {a ∈
A | ∃s′T (s, a, s′)]}. An action a is enabled in o ∈ O, notation En(M, o) if there
exists a state s such that Ω(s, o) holds and a ∈ En(M, s). An action a is admissi-
ble in o, notation Adm(M, o, a) if it is enabled in o and for all s such that Ω(s, o)
holds a is enabled in s. The image of s through a is denoted by Img(M, s, a) =
{s′ ∈ S | T (s, a, s′)}. We call transition of M a tuple (s, a, s′) s.t. T (s, a, s′) and
self–loop a transition (s, a, s′) s.t. T (s, a, s′) ∧ ∃o[Ω(s, o) ∧Ω(s′, o)].

A run or path for an NMA M is a sequence π = s0, a0, s1, a1, s2, a2, . . . of
states st and actions at such that ∀t ≥ 0 T (st, at, st+1). The length |π| of a
finite run π is the number of actions in π. We denote with π(S)(t) the t-th state
element of π, and with π(A)(t) the t-th action element of π. That is π(S)(t) =
st, and π(A)(t) = at.

Given two NMAs M1 = (S, A, O, T1, Ω) and M2 = (S, A, O, T2, Ω), we
write M1 ⊑ M2 iff T1(s, a, s

′) implies T2(s, a, s
′) for each state s, s′ ∈ S and

action a ∈ A.

We call a NMA M = (S, A, O, T , Ω) a Labelled Transition System (LTS)
whenever S = O and for all s1, s2 if Ω(s1, s2) holds then s1 = s2. In such a case
we may write simply M = (S, A, T ).
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3 Output Feedback Control Problem

A controller restricts the dynamics of a system, so that all paths starting in a ini-
tial state, eventually reach a state in a goal region (liveness specifications), while
keeping the system in the safe region (safety specifications). In this section, we
formally define the notion of output feedback control problem and its solutions,
by extending to possibly infinite NMAs the definitions in [37, 14] for finite LTSs.
With respect to [25], the output feedback control problem slightly generalize
the notion of quantized feedback control problem in order to provide a natural
framework for modelling control problems where plant state is not fully observ-
able. In what follows, let M = (S,A,O, T,Ω) be an NMA, and I,Σ,G ⊆ S be,
respectively, the initial, the safe, and the goal region.

An output feedback controller for M is a function K : O × A → B such
that ∀o ∈ O, ∀a ∈ A, if K(o, a) then Adm(M, o, a). We denote with dom(K)
the set of states for which a control action is defined. Formally, dom(K) =
{s ∈ S | ∃a∃o Ω(s, o) ∧ K(o, a)}. M(K) denotes the closed loop system, that
is the NMA (S,A,O, T (K), Ω), where T (K)(s, a, s′) = T (s, a, s′) ∧ ∃o[Ω(s, o) ∧
K(o, a)]. MΣ denotes the safe system, that is the NMA (S,A,O, TΣ , Ω), where
TΣ(s, a, s

′) = T (s, a, s′) ∧ Σ(s′).
We call a path π fullpath if either it is infinite or its last state π(S)(|π|)

has no successors (i.e. Adm(M, π(S)(|π|)) = ∅). We denote with Path(s, a)
the set of fullpaths starting in state s with action a, i.e. the set of fullpaths
π such that π(S)(0) = s and π(A)(0) = a. Given a path π in M, we define
the measure j(M, G, π) on paths as the distance of π(S)(0) to the goal on π.
That is, if there exists n > 0 s.t. π(S)(n) ∈ G, then j(M, G, π) = min{n |
n > 0 ∧ π(S)(n) ∈ G}. Otherwise, j(M, G, π) = +∞. We require n > 0 since
our systems are nonterminating and each controllable state (including a goal
state) must have a path of positive length to a goal state. Taking sup∅ = +∞,
the worst case distance of a state s from the goal region G is J(M, G, s) =
sup{j(M, G, π) | π ∈ Path(s, a), a ∈ Adm(M, s)}.

Definition 1. An NMA output feedback control problem P is a tuple
(M, I, Σ,G). An LTS control problem is an NMA output feedback control prob-
lem where M is an LTS and Σ = S, thus it is a triple (M, I, G).

A strong solution (or simply, a solution) to P is a controller K for MΣ such

that I ⊆ dom(K), and for all s ∈ dom(K), J(M
(K)
Σ , G, s) is finite.

An optimal solution to P is a solution K∗ to P such that for all solutions K

to P, for all s ∈ S, we have J(M
(K∗)
Σ , G, s) ≤ J(M

(K)
Σ , G, s).

The most general optimal (mgo) solution to P is an optimal solution K̃ to
P such that for all other optimal solutions K to P, for all o ∈ O, for all a ∈ A

we have that K(o, a) → K̃(o, a).

Intuitively, a strong solution takes a pessimistic view by requiring that for
each initial state, all runs in the closed loop system reach the goal, no matter
nondeterminism outcomes.

Example 1. Let S = {−1, 0, 1}×{0, 1, 2}, A = {−1, 0, 1}, and T : S×A×S → B

be defined by all arrows in Fig. 1. Let us consider the set of outputs O1 =
{−1, 0, 1}, the output relation Ω1 = {((s1, s2), s1) | (s1, s2) ∈ S}, and the NMA
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0, 1−1, 1 1, 1

0, 2−1, 2 1, 2

0, 0−1, 0 1, 0

0 0

0

0 0

0

-1 1 -1 1 -1 1

0 0

0
1-1 1-1 1-1

Fig. 1. Transition relation of NMAs M1

andM2 in Example 1.
Fig. 2. Inverted Pendulum with Station-
ary Pivot Point.

M1 = (S,A,O1, T,Ω1). Let I = Σ = S and G = {(0, 1)}. The NMA output
feedback control problem P1 = (M1, I, Σ,G) has no solution, because on output
0 it is not possible to determine if the correct action to enable is 0 (as it is in
state (0, 1)), 1 (as it is in state (0, 0)), or −1 (as it is in state (0, 2)).

Let us now consider the set of outputs O2 = {0, 1, 2} and the output relation
Ω2 = {((s1, s2), s2) | (s1, s2) ∈ S}, and the NMA M2 = (S,A,O2, T,Ω2). The
NMA output feedback control problem P2 = (M2, I, Σ,G) has the mgo solution
K(o, a) = ((o = 0) → (a = 1)) ∧ ((o = 1) → (a = 0)) ∧ ((o = 2) → (a = −1)).

4 Discrete Time Linear Hybrid Systems

Discrete Time Linear Hybrid Systems (DTLHSs) provide a uniform framework
to model both the plant and the closed loop system. In this section, we ex-
tend the definition of DTLHSs in [25] by considering outputs in order to model
measurements of system state (as usual in Control Theory [36]).

Definition 2. A Discrete Time Linear Hybrid Systems (DTLHS) H is a tuple
(X, U , Y , N , W , Γ ) such that:

1. X is a finite set of real and discrete present state variables. The set X ′ of
next state variables is obtained by decorating with ′ all variables in X.

2. U is a finite set of discrete input (controllable) variables.
3. Y is a finite set of discrete output variables.
4. Γ = ΓX ∪ ΓU ∪ ΓY is a typing for all variables. Moreover, ΓX′ = ΓX .
5. N(X,U,X ′) is a bounded linear predicate defining the transition relation of

H.
6. W (X,Y ) is a linear predicate defining the output relation of H. We require

that there is always an output associated to any state, formally: ∀x ∈ ΓX

∃y ∈ ΓY W (x, y). We write W−1(y) the set of states that has output y.
Formally, W−1(y) = {x ∈ ΓX | W (x, y)}.

Observe that ΓU and ΓY are bounded discrete typings for U and Y . This
models the fact that software controllers can only read a finite set of discrete
values and can only choose one among a finite set of actions. For this reason we
only have discrete outputs. Moreover, our DTLHSs also include the model of the
AD conversion (always present in our SBCS setting) via predicate W .
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Definition 3. Let H = (X, U , Y , N , W , Γ ) be a DTLHS. The dynamics of H
is defined by the Nondetermistic Moore Automata NMA(H) = (S,A,O, T,Ω),
where: S = ΓX , A = ΓU , O = ΓY , T (s, a, s′) holds if and only if N(s, a, s′)
holds, and Ω(s, o) holds if and only if W (s, o) holds. A state x for H is a state
x for NMA(H) and a run (or path) for H is a run for NMA(H).

Example 2. Let T be a positive constant (time step). We define the DTLHS
H = ([x1, x2], [u], [y1, y2], N, Γ,W ), where Γx1

= [−1, 1], Γx2
= [0, 2], Γu =

Γy1
= {−1, 0, 1}, Γy1

= {0, 1, 2}, and the transition relation N(x1, x2, u, x
′

1, x
′

2)
is defined by ((u = 0) → x′

1 = x1

2 ) ∧ ((u 6= 0) → x′

1 = x1) ∧ (x′

2 = x2 + uT ).
Finally, let the output predicateW be the rounding of the continuous variables x1

and x2. Formally,W (x1, x2, y1, y2) is defined by (x1−
1
2 ≤ y1 ≤ x1+

1
2 )∧(x2−

1
2 ≤

y2 ≤ x2 +
1
2 ).

An output feedback control problem for a DTLHS H is the NMA output
feedback control problem induced by the dynamics of H.

Definition 4. Given a DTLHS H = (X, U , Y , N , W , Γ ) and linear predicates
I(X), Σ(X), G(X) the DTLHS output feedback control problem (H, I, Σ,
G) is the NMA output feedback control problem (NMA(H), I, Σ, G). Thus, a
controller K : ΓY × ΓU → B is a solution to (H, I, Σ, G) iff it is a solution to
(NMA(H), I, Σ, G).

Example 3. LetH be the DTLHS in Ex. 2 andX = [x1, x2]. Let I(X) = Σ(X) =
ΓX and G(X) = (− 1

2 ≤ x1 ≤ − 1
2 ) ∧ (− 1

2 ≤ x2 ≤ 1
2 ). The DTLHS output

control problem (H, I, Σ,G) has the solution K(y1, y2, u) = ((y2 = 1) → (u =
0)) ∧ ((y2 = 2) → (u = −1)) ∧ ((y2 = 0) → (u = 1)). Observe, that this solution
depends on the output variable y2 only. As a consequence, if we consider the
DTLHS H′ = ([x1, x2], [u], [y2], Γ,W

′) with the output predicate W ′ defined by
W (x1, x2, y1, y2) = (x2 −

1
2 ≤ y2) ∧ (y2 ≤ x2 +

1
2 ) (rounding of the variable x2),

we have that K is a solution also to the control problem (H′, I, Σ,G).

4.1 A DTLHS Model for the Inverted Pendulum Case Study

In this section, we present the DTLHS model of the inverted pendulum, on
which our experiments focus. The inverted pendulum (see Fig. 2) is a classical,
hard control problem [22] whose DTLHS formulation is far from trivial [2]. The

inverted pendulum is modeled by taking the angle θ and the angular velocity θ̇

as state variables and the torquing force u ·F as the system input. The variable
u models the direction and the constant F models the intensity of the force.
Differently from [22], we consider the problem of finding a discrete controller,
whose decisions can be only “apply the force clockwise” (u = 1), “apply the
force counterclockwise” (u = −1)”, or “do nothing” (u = 0). A linear model
can be found by under- and over-approximating the non linear function sinx
with piecewise linear functions f−

i and f+
i (see [2] for details). The resulting

model is the DTLHS Ib = (X, U , Y , N , W b, Γ ) discretized with b bits, where
X = {x1, x2} is the set of continuous state variables with ΓX = ×2

i=1[cxi
, dxi

]
(being cxi

, dxi
the lower and upper bound constants for variable xi), U = {u}

is the set of input variables with Γu = {−1, 0, 1}, Y = {y1, y2} is the set of
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output variables (where y1 is a discretization for x1 and y2 for x2) with Γy1
=

Γy2
= {0, . . . , 2b − 1}, and the transition relation N(X,U,X ′) is the following

linear predicate (m is the pendulum mass, l is the pendulum length, and g is
the gravitational acceleration):

∃Z ∈ ΓZ(x
′

1 = x1 + 2πzq + τx2) ∧ (x′

2 = x2 + τ
g

l
zsin + τ

1

ml2
uF )

∧
∧

i∈[4] zi → f−

i (zα) ≤ zsin ≤ f+
i (zα)

∧
∧

i∈[4] zi → zα ∈ Ii ∧
∑

i∈[4] zi ≥ 1

∧ x1 = 2πzk + zα ∧ −π ≤ x′

1 ≤ π ∧ X ∈ ΓX ∧ U ∈ ΓU

Finally, the output predicate is W b(x1, x2, y1, y2) ≡
∧2

i=1 cxi
+

dxi
−cxi

2b
yi ≤ xi ≤

cxi
+

(

dxi
−cxi

2b
+ 1

)

yi ∧ yi ∈ Γyi
.

5 On-the-Fly Control Software Synthesis

Given a DTLHS output control problem P = (H, I, Σ,G), a typical approach to
the automatic synthesis of controllers consists of building a suitable finite state
representation ĤΣ of the plant H, computing an abstraction Î (resp. Ĝ) of the
initial (resp. goal) region I (resp. G) so that any solution to the control problem

(ĤΣ , Î , Ĝ) is a finite representation of a solution to P. For example, this can
be done by giving conditions ensuring that the abstract system satisfies some
equivalence relation with respect to the concrete system (e.g. see [33, 1, 25]).

To avoid useless computation, our on-the-fly control synthesis algorithm
(Sect. 5.2) simultaneously computes the finite abstraction ĤΣ and the solution

to the control problem (ĤΣ , Î , Ĝ). To make the algorithm description clear, we
first present in Sect. 5.1 the notion of output abstraction that adapts the notion
of control abstraction [25] to the output model considered in this paper.

5.1 Output Abstraction

In our setting [25], the finite state representation induced by the output relation
of a DTLHS is a design constraint rather than a methodological tool, since it
models the finite precision of sensor measurements.

Definition 5. Let H = (X,U, Y,N,W, Γ ) be a DTLHS and (H, I, Σ,G) be

a DTLHS control problem. The output abstraction of H is the LTS ĤΣ =
(S,A, TΣ) such that S = ΓY , A = ΓU , and for all s, s′ ∈ S, a ∈ A we have
TΣ(y, a, y

′) iff a is an admissible transition in y and there exists x, x′ ∈ ΓX such
that W (x, y) ∧ W (x′, y′) ∧ N(x, a, x′).

The output abstraction could be a highly non-deterministic LTS, thus mak-
ing problematic the existence of a strong solution to the output feedback control
problem. In particular, for small values of the sampling time, the output ab-
straction may contain a large number of self-loops: for any output y that is not
in the goal region, a self-loop (y, a, y) of ĤΣ prevents the action a to be enabled
in y in any strong solution to the output control problem. On the other hand,
if by repeatedly performing an action a in an abstract state y, it is guaranteed
that the system will leave the region W−1(y) represented by the output y after

a finite number of steps, a self-loop (y, a, y) of ĤΣ can be eliminated and the
action a can be enabled by a strong controller in the state y.
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Definition 6. Let H = (X,U, Y,N,W, Γ ) be a DTLHS, (H, I, Σ,G) be a

DTLHS control problem and let ĤΣ = (S,A, TΣ) be its output abstraction.

A self-loop (y, a, y) of ĤΣ is non-eliminable if there exists at least an infinite
run π = x0ax1ax2 . . . in H such that ∀t ∈ N xt ∈ W−1(y). Otherwise, a self-loop

(y, a, y) of ĤΣ is said to be an eliminable self-loop.

We call adequate output abstraction any LTS Ĥ′ ⊑ ĤΣ that omits some
eliminable self-loops.

Example 4. Let P = (H, I, Σ,G) be the control problem in Ex. 3. An adequate
output abstraction of H is the automaton considered in Ex. 1. Observe that,
for all z ∈ Γy2

, the self-loops ((0, z), 0, (0, z)) are non-eliminable self-loops. In
fact, N((0, z), 0, (0, z)) holds, and hence there are runs of H which infinitely
cycle on (0, z) with action 0. Thus self-loops ((0, z), 0, (0, z)) belong to the out-
put abstraction and to all adequate output abstractions. On the contrary, the
output abstraction contains, for all (z1, z2) ∈ ΓY , self-loops ((z1, z2), 1, (z1, z2))
and ((z1, z2),−1, (z1, z2)), as well as self-loops ((z1, z2), 0, (z1, z2)) where z1 6= 0.
It is easy to see that all such self-loops are eliminable, thus adequate out-
put abstractions (as the one in Ex. 1) may not contain them. Finally, observe
that, for all z1 ∈ Γy1

, action 1 is not admissible in (z1, 2), since for example
N((z1, 2), 1, (z1, 2+T )) holds and Σ((z1, 2+T )) does not hold. Similarly, for all
z1 ∈ Γy1

, action −1 is not admissible in (z1, 0).

The following theorem [25] states that it is correct to consider output ad-
equate abstractions when looking for a strong solution to a output feedback
DTLHS control problem.

Theorem 1. Let H = (X,U, Y,N,W, Γ ) be a DTLHS, let (H, I, Σ,G) be an

output feedback DTLHS control problem, and let ĤΣ be an adequate abstraction
of H. If Î , Ĝ ⊆ ΓY are such that I ⊆ W−1(Î) and G ⊇ W−1(Ĝ), then a strong

solution K̂ to the LTS control problem (ĤΣ , Î , Ĝ) is a strong solution to the
output feedback control problem (H, I, Σ,G).

5.2 On-the-Fly computation of output abstraction

Stemming from Theorem 1, the solution of a output control problem (H, I, Σ,G)

can be found as the solution to the finite LTS control problem (ĤΣ , Î , Ĝ). In [25],
we presented a MILP-based approach to the computation of the output abstrac-
tion ĤΣ . The solution to the finite LTS control problem is computed by adapting
the symbolic algorithm in [14]. Starting from goal states, the most general op-
timal controller is found looping backward, adding at each step to the set of
states D controlled so far, the strong preimage of D, i.e. the set of states for
which there exists at least an action a that drives the system to D, regardless
of possible nondeterminism.

In order to determine as soon as possible if a solution to a given output control
problem cannot be found, and actually compute the solution otherwise, Alg. 1
implements an incremental approach to control software synthesis, in the same
spirit of on-the-fly Model Checking [19]. Instead of first fully computing ĤΣ , and

then solving the finite LTS control problem (ĤΣ , Î , Ĝ), function strongCtrInc
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incrementally and simultaneously computes the abstraction ĤΣ and the solution
K̂ to the control problem (ĤΣ , Î , Ĝ) in such a way that, at the i-th iteration,

the computed abstraction Ĥi is large enough to correctly determine the set of
states that can be driven to the goal in at most i steps.

Function strongCtrIncr in Alg. 1. uses Ordered Binary Decision Diagrams
(OBDD) to represent sets and relations over sets. In Alg. 1, variable K̂ is the

OBDD representing the computed controller so far, D̂ is the domain of K̂, F̂ ⊆
D̂∪Ĝ is the set of outputs which have been added to D̂ in the last iteration, and
N̂ is the transition relation of ĤΣ computed so far. To save useless computation,
the OBDD Ê stores the set of pairs (y, u) ∈ ΓY × ΓU already considered in the

construction of N̂ .

Algorithm 1 Incremental Controller Synthesis

Input: A DTLHS H = (X,U, Y,N,W, Γ ), a control problem (H, I, Σ, G).
function strongCtrInc(H, I, Σ, G)

1. Ĝ← {y ∈ ΓY |¬∃x ∈ ΓX .W (x, y) ∧ ¬G(x)}

2. Î ← {y ∈ ΓY |∃x ∈ ΓX .W (x, y) ∧ I(x)}

3. K̂ ← ∅; D̂ ← ∅; N̂ ← ∅; F̂ ← Ĝ; Ê ← ∅

4. repeat

5. for all y ∈ F̂ , u ∈ ΓU do

6. P̂ ←overCounterImage(y, u)

7. for all ỹ ∈ P̂ do

8. if (ỹ, u) 6∈ Ê then

9. Ê ← Ê ∪ {(ỹ, u)} {mark (ỹ, u) as “examined”}
10. if admissible(Σ, ỹ, u) then

11. if selfLoop(ỹ, u) then N̂ ← N̂ ∪ {(ỹ, u, ỹ)}

12. Ô ← overImg(ỹ, u)

13. for all ỹ′ ∈ Ô do

14. if ỹ 6= ỹ′ ∧ existsTrans(ỹ, u, ỹ′) then

15. N̂←N̂ ∪ {(ỹ, u, ỹ′)}

16. Ĉnew←{(y, u) | y 6∈ D̂, ∃s′ N̂(y, u, y′) ∧ ∀y′ N̂(y, u, y′)⇒ y′ ∈ D̂ ∪ Ĝ}

17. K̂ ← K̂ ∪ Ĉnew; F̂ ← {y | (y, u) ∈ Ĉnew}; D̂ ← D̂ ∪ F̂

18. until Cnew = ∅

19. if Î ⊆ D̂ then return 〈True, D̂, K̂〉

20. else return 〈False, D̂, K̂〉

Function strongCtrIncr first computes a finite underapproximation Ĝ of the
goal region G (line 1), and a finite overapproximation Î of the initial region I

(line 2). Then, in line 3, the controller K̂, the controllable region D̂, the set Ê,

and the transition relation N̂ are initialized to the empty set (i.e. the empty

OBDD) and F̂ is initialized to the set of abstract goal states Ĝ.
After this initialization phase, function strongCtrIncr enters a loop (lines 4–

18) in which, at iteration i, all states which may be strongly controlled in at most

i steps are added to K̂. To this aim, a nested loop (lines 5–15) is performed where,

at each iteration, the algorithm computes the part of the transition relation N̂

that is necessary to find all states that a controller can drive in one step to the
controllable region D̂ computed so far. To this end, for any output y ∈ F̂ and for
any action u, it is computed an overapproximation P̂ of the set of outputs that
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can reach y in one step by performing action u (line 6). The overapproximation

P̂ is computed by function overCounterImg which, for each variable yi ∈ Y ,
computes the minimum and maximum value that yi can assume in a satisfying
assignment of N(x, a, x′) ∧ W (x, y) ∧ W (x′, y′) (thus 2|Y | MILP problems are

set up and solved). Since the set Ê contains all the output-action pairs already

considered in the construction of N̂ so far, to avoid the same part of N̂ to be
recomputed, only state-action pairs not in Ê will be considered (line 8).

As prescribed by the definition of adequate output abstraction, a transition
(y, u, y′), with y 6= y′, is added to N̂ whenever u is an admissible action in y and
there exist x ∈ W−1(y), x′ ∈ W−1(y′) such that N(x, u, x′) (lines 10–15). As for

self-loops (y, u, y), we want to add them to N̂ only if they are non-eliminable
(line 11). Since self-loop elimination is an undecidable problem [29], we employ
function selfLoop [25] to check a sufficient gradient based condition for self-loop
elimination that in practice turns out to be very effective. Namely, for each
variable xi, selfLoop tries to establish if xi is either always increasing or always
decreasing inside W−1(y) by performing action u. If this is the case, we have
that, beingW−1(y) a compact set, no Zeno-phenomena may arise, thus executing

action u it is guaranteed that ĤΣ will eventually leave the region W−1(y).

Lines 16–17 update the controller K̂ (and its domain D̂) computed so far.

The set F̂ is updated with the set of new controlled states. Finally, the outermost
repeat-until loop (lines 4–18) is performed until no more new controlled states
have been found.

Theorem 2. Let P = (H, I, Σ,G) be a DTLHS output feedback control problem.

If function strongCtrInc returns 〈True, D̂, K̂〉 then K̂ is a strong solution to P.

Finally, the actual control software (i.e., C code) for the DTLHS is synthe-

sized by translating K̂ as it is described in [28]. The guaranteed WCET (worst
case execution time) TK̂ of the synthesized control software is also computed.

6 Experimental Results

In this section we present our experiments that aim at evaluating the effective-
ness of our control software synthesis technique. We implemented strongCtrInc

in the C programming language using the CUDD package for OBDD based com-
putations and GLPK for solving MILP problems. The resulting tool, QKS otf ,
extends the tool QKS by adding the possibility of using the on-the-fly approach
described in Alg. 1.

The objective of our experiments is threefold. First, in Sect. 6.1 and 6.2 we
evaluate, on a meaningful case study, the speedup obtained with the on-the-fly
algorithm with respect to the exhaustive method presented in [25] in the context
of design space exploration. Second, in Sect. 6.3 we show how our on-the-fly
algorithm can be used for realizability and schedulability analysis issues [11] for
control software in design space exploration. Finally, in Sect. 6.4 we assess the
quality of our controllers, by evaluating their system level performances, such as
ripple and set-up time.
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6.1 Experimental Setting: Design Space Exploration

In our experiments, we consider the inverted pendulum case study introduced in
Sect. 4.1. To this aim, we model the inverted pendulum with the DTLHS Ib =
(X, U , Y , N , W b, Γ ) defined in Sect. 4.1, where the state variables bounds are
fixed as follows: cx1

= −1.1π radiants, dx1
= 1.1π radiants, cx2

= −4 radiants
per second, dx2

= 4 radiants per second. As for pendulum parameters, we set
F = 0.5 N and, as in [22, 2, 3], we set l and m in such a way that g

l = 1 (i.e. l = g)

and 1
ml2 = 1 (i.e. m = 1

l2 ). Finally, the DTLHS control problem is (Ib, Σ, I,G),

where I(x1, x2) ≡
∧2

i=1 0.9cxi
≤ xi ≤ 0.9dxi

, G(x1, x2) ≡
∧2

i=1 0.1 ≤ xi ≤ 0.1,

and Σ(x1, x2) ≡
∧2

i=1 xi ∈ Γxi
. That is, the goal is to turn the pendulum nearly

steady to the upright position, starting from nearly any possible initial position
and without going out of the state variables bounds.

Our aim here is to carry out experiments for different values of the number
of quantization bits b and of the sampling time T , i.e., the time between two
samples of the system state in the closed loop system. On the other hand, the
DTLHS Ib approximates the continuous time pendulum dynamics by discretiz-
ing the corresponding differential equations with a time step τ (τ = 0.05 seconds
in our experiments). T is typically greater than τ . If we directly set τ = T in
Ib, we would obtain a not accurate model, since τ depends on physical consid-
erations [36] (such considerations are not our focus here). Building on this, we
approximate the dynamics of the pendulum with sampling time T by iterating
n =

⌈

T
τ

⌉

times the transition relation N of Ib. Namely, we consider the tran-

sition relation Nn(X,U,X ′) ≡ ∃X̃(0), . . . , X̃(n)
∧n−1

i=0 N(X̃(i), U, X̃(i+1)) ∧ X =

X̃(0) ∧ X ′ = X̃(n), being X̃(0), . . . , X̃(n) sets of variables not occurring in N

(note that Nn is a linear predicate). Namely, Nn(x, u, x
′) holds if, by holding

action u for n transitions of step τ , the systems goes from x to x′. This allows
us to have a sampling time (at least) T , while retaining model accuracy. In the
following, we will use n instead of T , with the understanding that T = nτ . Thus,
the DTLHS reference model for our experiments is Ib

n = (X, U , Y , Nn, W
b, Γ ),

and the DTLHS control problem is (Ib
n, I, Σ,G).

In order to experimentally show that function strongCtrInc of Alg. 1 effec-
tively supports design space exploration, we will run both QKS otf and QKS on
Ib
n for (b, n) ∈ {8, 9, 10}× {10, 8, 6, 4, 2, 1}, and then compare the corresponding

computation times.

6.2 Experimental Results for Design Space Exploration

All experiments have been carried out on an Intel(R) Xeon(R) CPU @ 2.27GHz,
with 23GiB of RAM, Kernel: Linux 2.6.32-5-686-bigmem, distribution Debian
GNU/Linux 6.0.3 (squeeze).

Results of QKS and QKS otf are in Table 1. Columns meaning in Table 1 are
as follows. Columns b and n have the same meaning as in Sect. 6.1. Columns
CPUexh (resp., CPUotf) shows the computation time in seconds of QKS (resp.,

QKS otf). Columns RAMexh (resp., RAMotf) shows the RAM memory usage peak

in bytes for QKS (resp., QKS otf). Column |K̂| shows the generated controller

size, i.e. the number of nodes in the OBDD representing K̂. Column Speedup

shows the speedup obtained by using QKS otf instead of QKS, that is CPUexh

CPUotf .
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Table 1. Experimental results for pendulum

b n CPUexh RAMexh CPUotf RAMotf |K̂| % Speedup Result

8 10 9.90e+04 1.70e+08 4.58e+02 3.03e+07 1.25e+02 99.54 216.16 FAIL
8 8 4.41e+04 1.68e+08 3.06e+02 3.05e+07 2.06e+02 99.31 144.12 FAIL
8 6 2.28e+04 1.65e+08 2.77e+04 9.12e+07 6.40e+03 -21.49 0.82 PASS
8 4 1.17e+04 1.63e+08 1.47e+04 8.68e+07 7.53e+03 -25.64 0.80 PASS
8 2 4.91e+03 1.63e+08 1.35e+01 2.98e+07 1.63e+02 99.73 363.70 FAIL
8 1 2.69e+03 1.53e+08 4.72e+00 2.98e+07 1.61e+02 99.82 569.92 FAIL
9 10 4.95e+05 2.39e+08 2.70e+03 3.16e+07 1.88e+02 99.45 183.33 FAIL
9 8 2.31e+05 2.31e+08 2.40e+05 2.70e+08 1.08e+04 -3.90 0.96 PASS
9 6 1.20e+05 2.18e+08 1.19e+05 2.71e+08 1.25e+04 0.83 1.01 PASS
9 4 5.66e+04 1.98e+08 5.34e+04 2.50e+08 1.55e+04 5.65 1.06 PASS
9 2 2.18e+04 1.91e+08 2.29e+04 2.43e+08 2.16e+04 -5.05 0.95 PASS
9 1 1.16e+04 1.78e+08 1.97e+01 3.02e+07 2.11e+02 99.83 588.83 FAIL
10 10 3.82e+06 6.08e+08 1.45e+04 3.65e+07 2.87e+02 99.62 263.45 FAIL
10 8 1.71e+06 5.40e+08 6.74e+03 3.83e+07 6.01e+02 99.61 253.71 FAIL
10 6 7.45e+05 4.72e+08 6.67e+05 8.81e+08 2.45e+04 10.47 1.12 PASS
10 4 3.05e+05 4.13e+08 2.77e+05 8.31e+08 2.99e+04 9.18 1.10 PASS
10 2 1.05e+05 3.29e+08 9.96e+04 8.12e+08 4.52e+04 5.14 1.05 PASS
10 1 5.29e+04 2.64e+08 5.09e+04 8.07e+08 6.31e+04 3.78 1.04 PASS
Overall 7.85e+06 6.08e+08 1.60e+06 8.81e+08 79.62 4.91

Column % shows the gain (in terms of computation time) obtained by using

QKS otf instead of QKS, that is % = 100(1 − CPUexh
−CPUotf

CPUexh ). Column Result

is PASS if a controller for Ib
n exist (i.e., if function strongCtrInc returns True),

FAIL otherwise. Finally, the last row in Table 1 shows the sum of all computation
times for QKS and QKS otf , the maximum RAM memory usage peak for QKS

and QKS otf , and the overall computation time gain of QKS otf w.r.t QKS.
From Table 1 we note that, as expected, QKS otf obtain a huge speedup (near

to 100%) for the cases in which a control software is not found, while it requires
approximately the same time of QKS otherwise. This is due to the fact that the
on-the-fly algorithm introduces both an overhead (mainly due to counterimages

computations at line 6 of Alg. 1 and OBDD Ê management) and a speedup

(even when the control software is found, the adequate output abstraction N̂

may be not fully computed). Summing up, our approach obtain an overall gain
of nearly 80% when performing design space exploration, with an acceptable
memory usage overhead. This shows effectiveness of QKS otf for design space
exploration.

6.3 Control software realizability and schedulability

In order to verify if the control software works properly on a given microcon-
troller, two issues must be taken into account: realizability and schedulability.

A control software is realizable on a given microcontroller if the whole control
software fits in the microcontroller flash memory. Since our approach directly
outputs the C code for the control software, it is sufficient to compile the C code
on the given microcontroller architecture, obtain the hex file to be copied on the
microcontroller flash, and check if its size fits in the microcontroller flash.

As for schedulability, we note that the real-time requirement TW ≤ T = nτ

must hold, being TW an upper bound for the control software WCET. Since
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our approach also outputs the synthesized control software guaranteed WCET,
we are able to directly check if this requirement is fulfilled. Namely, since 2b
(resp. 2) bits are needed to encode pendulum states (resp. actions), in all our
experiments the WCET is TW ≤ 4bTB , being TB an upper bound for the time
needed to compute an if-then-else C block of a given known structure [28].
More in detail, by directly looking at the assembly code generated for such an
if-then-else C block on a candidate microcontroller (an example is shown in
Fig. 3), and by considering the number of clock cycles needed for each assem-
bly instruction, we obtain the upper bound for the number of microcontroller
clock cycles A needed to compute such a block. Thus, given the microcontroller
frequency F = 1

TC
, we have that TB ≤ ATC .

In order to complete the schedulability analysis of the control software, we
need to consider that other processes need to run with given periods together
with the controller itself. Namely, the controller computation (which in this
setting is a process with period nτ) must be preceded by processes reading
quantized values from plant sensors (one process per plant state variable) and
must be followed by a process sending the computed action to plant actuators.
Moreover, other processes may be needed, e.g. to accept keyboard input for
debugging. In the following, we will assume each of such processes to require
at most 100 clock cycles, and to have a period of 10−3 seconds (which is less
than nτ for all n). In order to determine beforehand (i.e., without having to
actually copy the control software in the microcontroller and test it) if all such
periods may be met in the given microcontroller architecture, we employ the
schedulability test for the Rate-Monotonic Scheduling (RMS, see e.g. [11]), that

is
∑k+1

i=1
Ci

Ti
≤ (k + 1)(21/(k+1) − 1), being Ci the WCET and Ti the period for

process i and k the number of processes running together with the controller.
Supposing the controller to be the process with index (k + 1), we have that the
schedulability test is implied by 4bATC

nτ + k 100TC

10−3 < 0.69.Again, being all the
required measures either known or computed by our model-based approach, we
are able to determine beforehand if the control software is schedulable in the
given microcontroller.

Our experimental results on control software schedulability and realizability
are shown in Table 2. Columns meaning in Table 2 are as follows. Columns b

and n have the same meaning as in Sect. 6.1. Column |K̂hex| shows the gen-
erated controller size, as the number of bytes to be written in the target mi-
crocontroller flash memory. Column Arch shows the microcontroller having the
smallest fit flash memory for |K̂hex|. Namely, we consider the following micro-
controllers of the Atmel family [32]: atmega8 (8K of flash), atmega16 (16K of
flash) and at91sam (1MB of flash). For both atmega8 and atmega16, the clock
frequency F is 4MHz (i.e., each clock tick needs TC = 250 nanoseconds), and
the upper bound of the number of clock cycles needed to compute the greatest
if-then-else C block in the software implementing K̂ is A = 16. For at91sam,
which, being ARM-based, is shown as ARM in Table 2, F = 50 MHz, TC = 250
nanoseconds and A = 12. Column WCET shows an upper bound for the con-
trol software WCET, i.e., 4bATC . Column α shows the ratio between the WCET
and the period of the controller process (note that this is part of the schedu-
lability test for RMS), i.e., α = WCET

nτ . Let β be an upper bound for the ratio
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Table 2. Experimental results for realizability
and schedulability

b n |K̂hex| Arch WCET α k

8 10 5.00e+03 atmega8 3.20e-04 6.40e-04 27
8 8 7.39e+03 atmega8 2.56e-04 6.40e-04 27
8 6 1.45e+05 atmega16 1.92e-04 6.40e-04 27
8 4 1.74e+05 atmega16 1.28e-04 6.40e-04 27
8 2 4.85e+03 atmega8 6.40e-05 6.40e-04 27
8 1 4.31e+03 atmega8 3.20e-05 6.40e-04 27
9 10 7.66e+03 atmega8 3.60e-04 7.20e-04 27
9 8 2.37e+05 atmega16 2.88e-04 7.20e-04 27
9 6 2.80e+05 atmega16 2.16e-04 7.20e-04 27
9 4 3.37e+05 atmega16 1.44e-04 7.20e-04 27
9 2 9.50e+05 ARM 4.32e-06 4.32e-05 344
9 1 5.98e+03 atmega8 3.60e-05 7.20e-04 27
10 10 1.20e+04 atmega8 4.00e-04 8.00e-04 27
10 8 2.18e+04 atmega8 3.20e-04 8.00e-04 27
10 6 1.06e+06 ARM 1.44e-05 4.80e-05 344
10 4 1.31e+06 ARM 9.60e-06 4.80e-05 344
10 2 1.96e+06 ARM 4.80e-06 4.80e-05 344
10 1 2.63e+06 ARM 2.40e-06 4.80e-05 344

.L398:
ldd r24,Z+10
cpi r24,lo8(1)
brne .L17

.L37:
ld r24,Z
cpi r24,lo8(1)
breq .L17
ldi r24,lo8(0)
ldi r25,hi8(0)
or r18,r19
brne .L38
ldi r24,lo8(1)
ldi r25,hi8(1)

.L38:
movw r18,r24

.L39:
ldd r24,Z+9
rjmp .L440

.L35:
ldi r18,lo8(0)
ldi r19,hi8(0)

Fig. 3. Snapshot of Atmel at-
mega16 assembly control soft-
ware.

between WCET and period for all other possible processes as computed in our
strengthened RMS schedulability test, i.e., β = 0.69−α (β ≈ 0.69 in all cases of
Table 2). Column k shows a lower bound for the maximum number of processes
which may be run together with the controller on the given microcontroller, un-
der the hypothesis that each process requires 100 clock cycles and has a period of

10−3 seconds. Namely, following again the RMS schedulability test, k = ⌊ 10−3β
100TC

⌋.
Note that k must be at least 3 for the inverted pendulum case study, since 2
processes are required to read the quantized value plant state from sensors and
a third process is needed to send the computed action to the actuators. Indeed,
in all cases we have k ≥ 27.

Summing up, our on-the-fly approach allows us to directly obtain the final
microcontroller implementation, by using a model-based methodology.

6.4 Control Software Performances

For the sake of completeness, though it is not the scope of our paper, we evaluate
performances of the generated control software for different values of b and n.

Namely, we simulate Ib
n
(K̂)

, that is the pendulum closed loop system. In order to
show impact of parameter n, in Figs. 4 and 5, we show simulations (on setup time
and ripple) for a fixed value of b (namely, b = 10) and for n ∈ {1, 6}. Finally, in
order to show impact of parameter b, in Figs. 6 and 7, we show simulations (on
setup time and ripple) for a fixed value of n (namely, n = 6) and for b ∈ {8, 10}.

7 Conclusion

In this paper, we address correct-by-construction control software synthesis from
Formal System Level Specifications for Discrete Time Linear Hybrid Systems.
Since in our approach the control software has a WCET known in advance, a
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Fig. 4. Pendulum
setup for b = 10,
n ∈ {1, 6} (angle x1

is shown, time is
in seconds)
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angle with b = 10, n = 1
angle with b = 10, n = 6

Fig. 5. Pendulum
ripple for b = 10,
n ∈ {1, 6} (angle x1

is shown, time is
in seconds)
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angle with b = 10, n = 6
angle with b = 8, n = 6

Fig. 6. Pendulum
setup for n = 6,
b ∈ {8, 10} (angle
x1 is shown, time is
in seconds)

6.34

6.345

6.35

6.355

6.36

6.365

6.37

6.375

6.38

16 18 20 22 24 26 28 30

angle with b = 10, n = 6
angle with b = 8, n = 6

Fig. 7. Pendulum
ripple for n = 6,
b ∈ {8, 10} (angle
x1 is shown, time is
in seconds)

concrete schedulability analysis can be easily carried out. We present an on-the-
fly algorithm for control software synthesis that detects as soon as possible if it
can not find a solution to a given control problem. This property turns out to be
very useful in design space exploration. Looking for an optimal choice of design
parameter, it is typical to try to solve control software synthesis problems that
do not have a solution. As confirmed by our experimental results, our algorithm
effectively supports design space exploration. On the inverted pendulum bench-
mark, using our on-the-fly algorithm we get a time saving of about 80% with
respect to an exhaustive approach.
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