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Abstract—The goal of System Level Formal Verification
(SLFV) is to show system correctness notwithstanding uncon-
trollable events (such as: faults, variation in system parameters,
external inputs, etc). Hardware In the Loop Simulation (HILS)
based SLFV attains such a goal by considering exhaustively all
relevant simulation scenarios.

We present a distributed multi-core algorithm for HILS-
based SLFV. Our experimental results on the Fuel Control
System example in the Simulink distribution show that by using
64 machines with an 8 core processor each we can complete the
SLFV activity in about 27 hours whereas a sequential approach
would require more than 200 days.

To the best of our knowledge this is the first time that
a distributed multi-core algorithm for HILS-based SLFV is
presented.
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I. INTRODUCTION

System Level Verification has the goal of verifying that
the whole (i.e., software + hardware) system meets the
given specifications. Model checkers for hybrid systems
cannot handle System Level Formal Verification (SLFV)
of actual systems. Thus Hardware In the Loop Simula-
tion (HILS) is currently the main workhorse for system
level verification and is supported by Model Based Design
tools like Simulink (http://www.mathworks.com) and Vis-
Sim (http://www.vissim.com). In HILS, the actual software
reads/sends values from/to mathematical models (simula-
tion) of the physical systems (e.g., engines, analog circuits,
etc.) it will be interacting with.

SLFV basically is an exhaustive HILS where all relevant
simulation scenarios are considered. Unless the number of
such scenarios is small, exhaustive HILS is infeasible.

The situation can be considerably improved by evenly
splitting the simulation scenarios into disjoint slices and
then effectively distributing the simulation of such slices on
different machines. This has been done in [1].

Unfortunately the approach in [1] cannot exploit the avail-
ability of multi-core processors. In this paper we advance
the state of the art by presenting a distributed multi-core
approach to HILS-based SLFV.

A. Main Contribution

Our System Under Verification (SUV) is a Hybrid System
(see, e.g., [2] and citations thereof) whose inputs belong to a
finite set of uncontrollable events (disturbances) modelling
failures in sensors or actuators, variations in the system
parameters, etc. We focus on deterministic systems (the typ-
ical case for control systems), and model nondeterministic
behaviours (such as faults) with disturbances. Accordingly,
in our framework, a simulation scenario is just a finite
sequence of disturbances and a simulation campaign is a se-
quence of simulation instructions (namely: save a simulation
state, restore a saved simulation state, inject a disturbance,
advance the simulation of a given time length).

A system is expected to withstand all disturbance se-
quences that may arise in its operational environment. Cor-
rectness of a system is thus defined with respect to such
admissible disturbance sequences.

In such a framework (as in [1]) we address Bounded
SLFV of safety properties. That is, given a time step τ
(time quantum between disturbances) and a time horizon
hτ (i.e., h multiplied by τ ) we return PASS if there is
no admissible disturbance sequence of length h and time
step τ that violates the given safety property. We return
FAIL , along with a counterexample, otherwise. Therefore,
SLFV is an exhaustive (with respect to admissible simulation
scenarios) HILS. In other words, we are aiming at (black
box) bounded model checking where the SUV behaviour is
defined by a simulator (Simulink in our examples).

To enable an effective distributed approach to SLFV, we
split the verification process into two main phases. First,
an off-line phase, where we: (a) generate the simulation
scenarios to be considered and evenly split them into disjoint
slices, by using the approach in [1]; (b) generate, for each
slice, a highly optimised simulation campaign for the given
simulator. Second, an on-line distributed phase where each
simulator runs its simulation campaign independently and
stops as soon as an error is found. The rationale is that the
simulation phase is the heavier one from a computational
point of view, thus our approach aims at parallelising such
a phase.



The on-line phase is supported by simulation tools
(Simulink in our examples). Here we provide methods and
tools to effectively carry out step b of the above off-
line phase. Our main contributions can be summarised as
follows.

Distributed multi-core SLFV: We present an optimisation
algorithm that transforms a sequence of simulation scenarios
into a very efficient simulation campaign that avoids revis-
iting already visited states by using simulator save/restore
commands. Our optimisation algorithm generates a very
efficient simulation campaign that during the simulation
stores at most h states (if hτ is the time horizon). This allows
us to store such states using a small amount of RAM (about
15MB in our case study where h = 100 and each simulator
state takes about 150KB). Such a small RAM footprint
allows running in parallel a simulation campaign for each
of the available cores. Note that an efficient simulation
campaign generated using the optimiser in [1] may need to
store many states. For this reason simulation campaigns in
[1] store states on the local disk. As a result, the algorithm in
[1] cannot exploit availability of multi-core processors, since
the the local disk becomes the main bottleneck if more than
one simulation campaign tries to use it. Devising a strategy
for storing/restoring simulation states that uses a moderate
amount of memory and can thus be implemented in RAM
rather then on disk is indeed the main obstacle we had to
overcome to achieve multi-core parallelism.

Experimental Results: We implemented our approach and
present experimental results on its usage in the Fuel Control
System (FCS) example in the Simulink distribution. In our
experiments we set our time step τ to 1 second and our time
horizon hτ to 100 seconds (i.e., h = 100). SLFV for this
case study entails running more than 4 million simulation
scenarios.

Each core runs an instance of our optimisation algorithm
taking as input a different slice of the simulation scenar-
ios. Our optimiser takes just a few minutes to generate
a simulation campaign from a given slice. In our setting
each machine has a single processor with c = 8 cores. We
present experimental results with k = 8, 16, 32, 64 machines
totalling kc = 64, 128, 256, 512 cores.

Our experimental results show that, with respect to the
(distributed single-core) approach in [1], our distributed
multi-core approach saves more than 65% of the compu-
tation time when the same hardware is used. For example,
when using 64 machines we can complete SLFV for our
case study in about 27 hours whereas using the approach in
[1] requires about 81 hours. Note that a purely sequential
approach would require more than 200 days.

Summing up: We present an effective distributed multi-
core approach to HILS-based SLFV. To the best of our
knowledge this is the first time that such an approach is
presented.

B. Related Work

The paper closest to ours is [1], where a HILS-based
distributed algorithm for SLFV has been presented. We note
however that the algorithm of [1] cannot exploit availability
of multi-core processors since the simulation campaigns
generated by such an optimiser heavily relies on the local
disk that becomes the main bottleneck if more than one
simulation campaign tries to use it. The present paper ad-
vances the state of the art by presenting a novel optimisation
algorithm that generates simulation campaigns requiring a
small amount of RAM. This, in turn, enables use of multi-
core parallelism.

HILS-based SLFV has also been investigated in [3] where
the CMurphi [4] capability to call external C functions in a
black box fashion has been used to drive the ESA satellite
simulator SIMSAT in order to verify satellite operational
procedures.

Statistical model checking, being basically black box, is
also closely related to our approach. In such a setting, [5] is
closely related to our paper since it addresses system level
verification of Simulink models and presents experimental
results on the very same Simulink case study we are using.
Monte Carlo model checking methods (see, e.g., [6], [7],
[8]) are also related to our approach. The main differences
between the above statistical approaches and ours are the fol-
lowing: (i) statistical methods sample the space of admissible
simulation scenarios, whereas we address exhaustive HILS;
(ii) statistical methods do not address optimisation of the
simulation campaign which is our main concern here, since
this is what makes exhaustive HILS viable.

Formal verification of Simulink models has been widely
investigated, examples are in [9], [10], [11]. Such methods
however focus on discrete time models (e.g., Stateflow or
Simulink restricted to discrete time operators) with small
domain variables. Therefore they are well suited to analyse
critical subsystems, but cannot handle complex system level
verification tasks (e.g., as our case study). This is indeed the
motivation for the development of statistical model checking
methods as the one in [5] and for our exhaustive HILS-based
approach.

Synergies between simulation and formal methods have
been widely investigated in digital hardware verification.
Examples are in [12], [13], [14], [15] and citations thereof.
The main differences between the above approaches and ours
are: (i) they focus on finite state systems whereas we focus
on infinite state systems (namely, hybrid systems); (ii) they
are white box (requiring availability of the system model)
whereas we are black box. We note that the idea of speeding
up the simulation process by saving and restoring suitably
selected visited states is also present in [15].

Parallel algorithms for explicit state exploration have been
widely investigated. Examples are in [16], [17], [18], [19],
[20], [21]. The main difference with our approach is that all

2



the above ones focus on parallelising the state space explo-
ration engine by devising techniques to minimise locking of
the visited state hash table whereas we leave unchanged the
state space exploration engine (the simulator in our context)
and use a Map-Reduce like strategy that splits (Map step)
the set of simulation scenarios into equal sized subsets to be
simulated on different cores and stops verification as soon
as one of such cores finds an error (Reduce step). Note that
we propose an embarrassingly parallel algorithm for (black
box) formal verification of hybrid systems. Embarrassingly
parallel verification algorithms have also been investigated in
[22], as for finite state system verification, and in [23], as for
symbolic testing of programs. Such approaches are close in
spirit to ours, although they differ from ours as for the class
of systems considered (we focus on hybrid systems whereas
the above papers focus on discrete systems) as well as for
the modelling approach (our black box algorithm rests on
the disturbance model whereas the above papers both present
white box algorithms resting on the system model).

II. BACKGROUND

In this section we give some background notions. Unless
otherwise stated, all definitions are based on [24], [1].
Throughout the paper, we use R≥0 for the set of non-
negative reals, R+ for the set of strictly positive reals, and
Bool = {0, 1} for the set of Boolean values (0 for false and
1 for true). N+ denotes the set of positive natural numbers.

A. Modelling uncontrollable events

A discrete event sequence (Definition 1 and Fig. 1a) is
a function associating to each (continuous) time instant a
disturbance event (or, simply, disturbance). Disturbances,
encoded by integers in the interval [0, d] (for a given
d ∈ N+), represent exogenous events (e.g., faults). We use
event 0 to represent the event carrying no disturbance. As
no system can withstand an infinite number of disturbances
within a finite time, we require that, in any time interval of
finite length, a discrete event sequence differs from 0 only
in a finite number of time points.

Definition 1 (Discrete event sequence): Let d ∈ N+. A
discrete event sequence over integer interval [0, d] is a
function u : R≥0 → [0, d] such that, for all t ∈ R≥0, the
set

{
t̃ | 0 ≤ t̃ ≤ t and u(t̃) 6= 0

}
has finite cardinality. We

denote with Ud the set of discrete event sequences over [0, d].

B. Modelling the System Under Verification

We model (Definition 2) our System Under Verification
(SUV) as a continuous time Input-State-Output deterministic
dynamical system whose inputs are discrete event sequences.

Definition 2 (Discrete Event System): A Discrete Event
System (DES) is a tuple H = (S, s0, d, O, flow, jump,
output) where:
• S is a set of states (finite, countable, continuous, or any

combination thereof).

• s0 ∈ S is the initial state.
• d ∈ N+ defines the input space as Ud (the set of discrete

event sequences over [0, d]).
• O is the set of output values (finite, countable, contin-

uous, or any combination thereof).
• flow : S×R≥0 → S. For all s ∈ S, t ∈ R≥0, flow(s, t)

defines the state reached by H from state s after time t when
no event occurs. Accordingly, we stipulate that for all s ∈ S,
flow(s, 0) = s.
• jump : S × [0, d] → S. For all s ∈ S, e ∈ [0, d]

jump(s, e) defines the state reached by H from state s upon
occurrence of event e (no time flows). Accordingly, we
stipulate that for all s ∈ S, jump(s, 0) = s.
• output : S → O. The value output(s) defines the output

of H in state s.
The state, respectively output, reached after time t by a

DES with a given input can be computed with the DES state,
respectively output, function (Definition 3).

Definition 3 (DES state and output functions): The state
function of DES H is a function φ : Ud ×R≥0 → S, where
φ(u, t) is the state reached at time t by H with input the
discrete event sequence u. Function φ is defined inductively
as follows:
• φ(u, 0) = jump(s0, u(0)), where s0 is the initial state

of H;
• For each t > 0, φ(u, t) = jump(flow(φ(u, t∗), t −

t∗), u(t)), where: t∗ < t is the greatest value such that
u(t∗) 6= 0 and we let t∗ = 0 if such a value does not exist
(i.e., when u is always 0 before t).

The output function of H is the function ψ : Ud×R≥0 →
O defined as ψ(u, t) = output(φ(u, t)). In other words, ψ
computes the output (as a function of time) of H when the
input to H is the discrete event sequence u. In general,
ψ(u, t) is not a discrete event sequence (e.g., it may take
a non-zero value an infinite number of times).

C. Modelling the property to be verified

We model the property to be verified with a continuous-
time monitor which observes the state of the system to be
verified and checks whether the property under verification
is satisfied (Fig. 1b). A temporal logic specification can be
transformed into a continuous-time monitor as in [25]. The
output of our monitor is 0 as long as the property under
verification is satisfied and becomes and stays 1 (sustain) as
soon as the property fails. This non-decreasing property of
the monitor output ensures that we never miss a property
failure report, even when sampling the monitor output only
at discrete time points (Fig. 1c). The use of monitors gives
us a flexible approach to model the property to be verified.
In particular, it is easy to model bounded safety and bounded
liveness properties as monitors.

Since the monitor output is all we need to carry out our
verification task, we can model our SUV along with the
property to be verified as a DES with an embedded monitor
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Figure 1: (a) a discrete event sequence (d = 3); (b) our SUV
with an embedded monitor; (c) the SUV monitor output.

whose set of output values is Bool. We call such a DES a
Monitored Discrete Event System (Definition 4 and Fig. 1b).

Definition 4 (Monitored Discrete Event System): A
Monitored Discrete Event System (MDES) is a tuple
H = (S, s0, d,flow, jump, output) such that (S, s0, d,
Bool, flow, jump, output) is a DES whose output function
ψ(u, t) is non-decreasing with respect to t. That is, for any
input sequence u ∈ Ud, for all t, t′ ∈ R≥0, if t ≤ t′ then
ψ(u, t) ≤ ψ(u, t′). In other words, an MDES is a DES with
non-decreasing boolean outputs.

D. Modelling SUV operational scenarios

System level verification follows an Assume-Guarantee
approach aimed at showing that the SUV meets its specifi-
cation (Guarantee) as long as the SUV operational environ-
ment behaves as expected (Assume). As in Bounded Model
Checking (BMC), we model (Definition 5) scenarios in the
SUV operational environment as sequences of disturbances
(disturbance traces) our SUV is expected to withstand. Each
disturbance is an integer in [0, d] and disturbance traces are
of finite length h. Given a time quantum τ ∈ R+, a distur-
bance trace can be associated to a discrete event sequence
where all disturbances occur at time points multiple of τ .

Definition 5 (Disturbance trace): Let h, d ∈ N+. An
(h, d) disturbance trace δ is a finite sequence δ : [0, h−1]→
[0, d]. Given τ ∈ R+ (time quantum), to an (h, d) disturbance
trace δ we can univocally associate a discrete event sequence
uτδ , defined as follows (see also Fig. 2d, ignoring the letters
in the disturbance traces). For all t ∈ R≥0, if there exists
k ∈ [0, h−1] such that t = τk then uτδ (t) = δ(k), else uτδ (t)
= 0 (no disturbance).

Thus a disturbance trace δ defines an operational scenario
(namely, uτδ ) for our SUV.

An (h, d) sequence of disturbance traces is a finite
sequence ∆ = δ0, . . . , δn−1 of (h, d) disturbance traces.
Given τ ∈ R+, to each sequence of disturbance traces ∆
= δ0, . . . , δn−1 is associated a sequence of discrete event
sequences Uτ∆ = uτδ0 , . . . , uτδn−1

. Accordingly, we model our
SUV operational environment as a sequence of disturbance
traces ∆ since Uτ∆ defines the operational scenarios our SUV
should withstand.

E. The System Level Formal Verification problem

A System Level Formal Verification (SLFV) problem is a
tuple P = (h, d, τ , ∆, H) where: h, d ∈ N+, τ ∈ R+, ∆

= δ0, . . . , δn−1 is an (h, d) sequence of disturbance traces,
and H = (S, s0, d,flow, jump, output) is an MDES.

The answer to SLFV problem P is FAIL if there exists a
disturbance trace δ in ∆ such that ψ(uτδ , τh) = 1 (in such a
case also the counterexample δ is returned), PASS otherwise.

Note that, notwithstanding the fact that the number of
states of our SUV is infinite and we are in a continuous
time setting, to answer a SLFV problem we only need to
check a finite number of disturbance traces. This is because
we are bounding: (a) our time horizon to T = hτ (i.e.,
h multiplied by τ ), and (b) the set of time points at which
disturbances can take place, by taking τ as the time quantum
among disturbance events.

Thus, by taking h large enough (as in BMC) and τ
small enough (to faithfully model our SUV operational
scenarios), we can achieve any desired precision. On such
considerations rests the effectiveness of the approach.

F. HILS-based System Level Formal Verification

We use a black-box approach where the MDES H defin-
ing our SUV and property to be verified is defined using the
modelling language of a suitable simulator (e.g., MatLab and
Stateflow for Simulink).

We compute the answer to an SLFV problem (h, d,
τ , ∆, H) by simulating each operational scenario δ in
the operational environment ∆. In other words, we are
performing an exhaustive (with respect to ∆) HILS.

We drive a simulator for H (that is, a simulator running a
model for H) using four basic commands: store, load, free,
run. Command store(l) stores in memory the current state
of the simulator and labels with l such a state. Command
load(l) loads into the simulator the stored state labelled
with l. Command free(l) removes from the memory the
state labelled with l. Command run(e, t) (with e ∈ [0, d]
and t ∈ R+) injects disturbance e and then advances the
simulation of time t. A simulation campaign is a sequence
of simulator commands.

Using the commands store and load we can avoid revisit-
ing simulation states (much as in explicit model checking).
Using command free we can remove from the memory
states that will never be needed in the remaining part of
the simulation campaign. This is needed since each state
may require many KB of memory (150 KB in the case
study presented in this paper). We will show how optimised
simulation campaigns enable HILS-based distributed multi-
core SLFV.

III. OVERALL APPROACH

Our overall approach is shown in Fig. 3. To define an
SLFV problem (h, d, τ , ∆, H), we need to build the
sequence of admissible disturbance traces ∆ (operational
environment).

Of course, it is typically infeasible to define operational
environments by listing all their disturbance traces. In [1]
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Figure 2: (a) disturbance model; (b) CMurphi-based distur-
bance generator; (c) generated labelled admissible sequence
of disturbance traces (d = 3, h = 6, integers from 0 to d
denote disturbances, letters denote labels); (d) the discrete
event sequence associated to the trace in the black rectangle
in part (c), given time quantum τ .

it is shown how operational environments can be easily
defined using the modelling language of a finite state model
checker (CMurphi [4]). We follow the approach in [1] and
run CMurphi in Depth-First Search (DFS) mode to generate
the operational environment ∆. DFS guarantees that the
disturbance traces in ∆ are generated in lexicographic order
(see Fig. 2a–b and Fig. 3a).

Starting from ∆, we aim at generating highly optimised
simulation campaigns, which exploit as much as possible the
capabilities of modern simulators to store and restore simula-
tion states. Given a disturbance trace δ = d0, . . . , dh−1 ∈ ∆,
any prefix of δ univocally identifies a simulation state, given
that, to answer our SLFV problem, the simulator is intended
to be run under input δ starting from its initial state.

When simulating all traces in ∆, often multiple traces,
e.g., δ = d̂0, . . . , d̂p, dp+1, . . . , dh−1 and δ′ = d̂0, . . . ,
d̂p, d

′
p+1, . . . , d

′
h−1, have a common prefix, e.g., d̂0, . . . , d̂p.

In order to properly exploit the load/store capabilities of the
simulator, we would like to proceed as follows. When verify-
ing the first of such traces, e.g., δ, we: (i) run the simulator
with input being the common prefix d̂0, . . . , d̂p; (ii) store
under a given label, e.g., l, the state reached by the simulator
so far; (iii) continue the simulation of δ by injecting the
remaining disturbances of δ, i.e., dp+1, . . . , dh−1. When
verifying δ′, we: (i) avoid the recomputation of the state
that the simulator would reach when run on the common
prefix of disturbances d̂0, . . . , d̂p by loading back the state
previously stored under label l; (ii) continue the simulation
of δ′ by injecting the remaining disturbances of δ′, i.e.,
d′p+1, . . . , d

′
h−1.

Unfortunately, a naive identification of common pre-
fixes of traces in ∆ would be computationally very ex-
pensive, given that ∆ may contain a huge number of
traces (about 4 million in our examples, which need about
3.5GB of memory to be stored). Following [1], we delegate
the CMurphi-based disturbance trace generator to produce
a labelled lexicographically ordered sequence of distur-
bance traces ∆λ. Each δλ in ∆λ is of the form δλ =
l0, d0, l1, d1, . . . , lh−1, dh−1, lh, where δ = d0, . . . , dh−1 is
a disturbance trace in ∆ and l0, . . . , lh belong to a countably
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Figure 3: Our approach to distributed multi-core SLFV

set of labels L (e.g., N+). Labels are defined by an injective
map λ from finite sequences of disturbances (including
the empty sequence) to L. As a consequence, prefixes
d̂0, . . . , d̂p−1 common to multiple disturbance traces in ∆
are followed, in ∆λ, by the same label l̂p = λ(d̂0, . . . , d̂p−1)
(see Fig. 2c). Given that our CMurphi-based generator runs
in DFS mode, traces are produced in lexicographic order
and labelled at no additional computational cost during
generation, as shown in [1]. This allows us to assume that
∆λ is available as an input. Hence, in our setting, the SLFV
can be regarded to be (h, d, τ , ∆λ, H) rather than (h, d, τ ,
∆, H). This greatly simplifies the design of our simulation
campaign optimiser (Section IV).

In order to enable parallel computation on k ∈ N+

machines with c ∈ N+ cores each, we evenly partition the
labelled lexicographically ordered sequence of disturbance
traces ∆λ into kc (labelled) lexicographically ordered se-
quences of disturbance traces ∆λ

0 , . . . ,∆
λ
kc−1, by assigning

the i-th trace (0 ≤ i < |∆λ|) to the
⌊
ikc/|∆λ|

⌋
-th slice

(Fig. 3a). We use such kc slices to compute in parallel kc
highly optimised simulation campaigns (Fig. 3b), which can
be simulated in parallel using kc simulators each one running
on a different core of our k machines (Fig. 3c–d).

The answer to the SLFV problem is FAIL if one of the
simulation campaigns raises the simulator output function
to 1. The answer is PASS otherwise. In case the answer is
FAIL , the driver of the simulator which raised the error can
compute a disturbance trace δ (called counterexample) in the
input slice such that the discrete event sequence associated
to δ under time quantum τ (see, e.g., Fig. 2d) would lead
the SUV to an error state (Fig. 3e).

IV. COMPUTATION OF SIMULATION CAMPAIGNS

In this section we describe our RAM-based simulation
campaign optimiser which enables multi-core SLFV.

Given a labelled (h, d) lexicographically ordered se-
quence of disturbance traces ∆λ = δλ0 , . . . , δλn−1, our
optimiser computes a simulation campaign for any simulator
of any DES H whose set of inputs is [0, d]. The computed
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Input: ∆λ, a labelled lex-ordered sequence of disturbance traces
Output: χ , the computed simulation campaign, initially empty

1 LBT← buildLBT(∆λ);
2 let l0 be the first label common to all traces in ∆λ;
3 stored← empty set of labels; /* inv: stored⊆LBT and |stored|≤h */
4 append store(l0) to χ and add l0 to stored;
5 i← 0;
6 foreach δλ = l0, d0, . . . , lh−1, dh−1, lh in ∆λ do
7 i++; /* δλ is the i-the trace in ∆λ */
8 t load← max t s.t. lt ∈ stored;
9 append load(lt load) to χ;

10 foreach label l ∈ stored s.t. LBT[l].lastTrace ≤ i do
11 append free(l) to χ;
12 remove l from stored;
13 d̂← dt load; steps← 1;
14 for t← t load + 1 to h− 1 do
15 toBeStored← (lt ∈ LBT− stored and LBT[lt].lastTrace > i);
16 if toBeStored or dt 6= 0 then
17 append run(d̂, steps) to χ; d̂← dt; steps← 1;
18 if toBeStored then
19 append store(lt) to χ and add lt to stored;
20 else steps++;
21 return χ;

22 function buildLBT(∆λ)
23 LBT← empty tree of labels;

/* for each l ∈ LBT, LBT[l].lastTrace stores the index of last trace
where it is known to occur */

24 watched← empty array [0..h− 1] of labels;
25 let l0 be the first label common to all traces in ∆λ;
26 set l0 as the root of LBT with LBT[l0].lastTrace← |∆λ|;
27 watched[0]← l0;
28 i← 0;
29 foreach δλ = l0, d0, . . . , lh−1, dh−1, lh in ∆λ do
30 i++; /* δλ is the i-th trace in ∆λ */
31 for t← 0 to h− 1 s.t. lt ∈ LBT do LBT[lt].lastTrace← i;
32 t lbt← max t s.t. lt ∈ LBT;
33 t w← max t s.t. lt ∈ watched;
34 if t lbt 6= t w then

/* label lt w 6∈ LBT: add it */
35 t child← min t > t w s.t. watched[t child] ∈ LBT (if any);
36 add lt w to LBT as child of lt lbt with LBT[lt w].lastTrace = i;
37 move lt child (if any) as to be child of lt w in LBT;
38 foreach t← t w + 1 to h− 1 do watched[t]← lt;

/* watched now contains labels of the last trace */
39 return LBT;

Algorithm 1: DFS-Optimiser pseudo-code

campaign is abstract in that, for all commands of the form
run(e, t), t is a natural number and not an actual time
duration. By providing a time step τ ∈ R+, χ can be
instantiated into a concrete simulation campaign χτ , by
replacing all run(e, t) commands by run(e, tτ).

The algorithm of our optimiser is shown as Algorithm 1.
As the input sequence ∆λ of labelled disturbance traces can
be too big to be kept in main memory, the optimiser reads
the input file sequentially twice. In the first scan of ∆λ, the
optimiser builds a data structure called Labels Branching
Tree (LBT) as completely as possible within the available
RAM. Afterwards, it reads ∆λ again to produce the abstract
simulation campaign from the LBT.

A. LBT construction

The LBT is a tree of labels rooted at l0, the first label of all
traces (e.g., l0 = a in Fig. 2c and Fig. 4). The LBT collects
branching labels, i.e., labels li for which there exist at least
two labelled disturbance traces δλ = l0, d0, . . . , li, di, . . . , lh
and δλ′ = l0, d0, . . . , li, d

′
i, . . . , l

′
h in ∆λ which are identical

up to li and such that di 6= d′i. Branching labels represent
simulator states whose storing may save simulation time (by
loading them back later).

Label lj is a child of li in the LBT iff, for all δλ = l0, d0,
. . . , li, . . . , lj , . . . , lh ∈ ∆λ, no lk in δλ with i < k < j is
in the LBT (note: all such δλ are identical at least up to lj).
For each label l in the LBT, the number of the last trace in
∆λ where it occurs is kept.

The construction of the LBT is shown as function
buildLBT() in Algorithm 1 (from line 22). The function
scans the input slice in order to recognise branching labels,
keeping in array watched the labels of the last processed
trace. In fact, as the traces in ∆λ are lexicographically
ordered, these are the only labels that may become branching
when processing a new trace. To see why, assume that the
optimiser is processing, e.g., trace 2 in Fig. 4a (left). As this
trace starts to be different with respect to the previous trace
(trace 1) from the disturbance at step 2 (i.e., disturbance 2
right after label c), the optimiser infers that labels d, e, f, g
of trace 1 will never occur in later traces of ∆λ, and will
never become branching.

As for the actual recognition of a new branching la-
bel and its addition to the LBT, assume that function
buildLBT() is processing the i-th disturbance trace δ =
l0, d0, . . . , lt lbt, dt lbt, . . . , lt w, dt wW, . . . , lh (line 29). Vari-
able t lbt is set to the max index of a label in δλ already
in the LBT, and t w is the max index of a label in δ which
belongs also to array watched. As l0 is put both in the
LBT and in watched[0] at the beginning, both values are
always defined. The algorithm infers that the current trace
is identical to the previously processed one up to t w, but
differs from it starting from the disturbance to be injected at
step t w + 1. If t w = t lbt, label lt w is already branching,
and nothing has to be done. Otherwise, the new label lt w is
recognised as branching, and is added to the LBT as a child
of lt lbt (as, given that the input traces are in lexicographic
order, t w 6= t lbt implies t w > t lbt). As lt lbt could
already have children in the LBT, the tree may need to be
rearranged to accommodate the new label lt w. Given that the
input traces are in lexicographic order, the last task is very
simple, as at most one child of lt lbt must be moved. This
child, if exists, must be a label that occurred in the previous
trace, i.e., it belongs to the watched array (line 35).

Fig. 4a shows an example of LBT construction starting
from a labelled lexicographically ordered sequence of dis-
turbance traces ∆λ consisting of 6 traces. Note that, out of
25 labels in ∆λ, only 5 of them belong to the LBT. When
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Figure 4: Simulation campaign optimiser. (a) Construction
of an LBT from 6 traces (labels are shown as letters). (b) The
computed optimised simulation campaign.

processing, e.g., trace 6, tlbt = 0 points to label a having
index 0 in trace 6 and tw = 1 points to label b having index
1 in trace 6 and occurring in array watched. Label b becomes
branching as there are previous traces (e.g., trace 5) identical
to trace 6 up to b and different from that point on. The new
branching label b becomes a child of a in the LBT. The
previous child of a, i.e., c, becomes a child of b.

B. Computation of the abstract simulation campaign

Once the LBT is built, the optimiser reads the input slice
a second time to compute the abstract simulation campaign,
keeping track of which LBT labels are stored in simulator
memory at any moment (set stored, line 3 of Algorithm 1).

For each δλ = l0, d0, . . . , lload, . . . , lh in ∆λ, let lload be
the right-most label of δλ currently stored by the simulator
(line 8). The optimiser appends to the output campaign the
following commands: (i) load(lload) (line 9); (ii) free(l) for
each label l ∈ LBT which represents a currently stored
state that will never occur in future traces (line 12); (iii) a
command of the form run(d̂, steps) for each maximal sub-
sequence of length steps in δλ (starting from lload) of the
form d̂, li1 , 0, li2 , . . . , 0, listeps d̃, l̃ where either d̃ 6= 0 or label
l̃ needs to be stored (line 17). In the latter case, command
store(l̃) is appended as well (line 19). Label l̃ needs to be
stored (see line 15) if it is in the LBT but not yet stored and
it will occur again in a later trace.

The maximum number of states that the simulator must
keep stored at any moment is bounded by h (the horizon).
This is because, when starting the simulation of the portion
of χτ stemming from any trace δλ ∈ ∆λ, the simulator
executes command load (lload) with lload being a label in trace
δλ having index i. Given that the disturbance traces in ∆λ

are in lexicographic order, all labels occurred with indices
> i in traces of ∆λ before δλ never occur in traces of ∆λ

after δλ. Hence, currently stored states identified by those
labels will not need to be loaded back in the future and can

be safely freed (line 12).
Fig. 4(b) shows the simulation campaign computed by

the optimiser on the slice in Fig. 4(a). Except for the first
command which stores a (the label common to all traces and
representing the simulator initial state), each line represents
the portion of the simulation campaign stemming from each
trace. Note that only the first trace is simulated entirely,
while all the others are simulated starting from intermediate,
previously stored, states.

C. Optimiser soundness and completeness
Given an SLFV problem P = (h, d, τ , ∆λ, H), Algo-

rithm 1 computes a simulation campaign χτ which is sound
and complete with respect to ∆λ. That is: if the answer
to P is PASS , then the output of the simulator at the end
of the execution of the simulation campaign χτ will be 0
(soundness). On the other hand, if the answer to P is FAIL
and δλ is the first counterexample in ∆λ, then the output of
the simulator will raise from 0 to 1 during the simulation of
a command of χτ stemming from δλ (completeness).

The result above can be proved by formalising the notion
of simulator for H along the lines of [1].

V. EXPERIMENTAL RESULTS

In this section we evaluate the effectiveness of our dis-
tributed multi-core approach to SLFV (in short mcSLFV)
and compare it with the distributed single-core approach
(in short scSLFV) of [1]. For this reason we: (i) use the
very same case study of [1], i.e., the Fuel Control System
(FCS) model included in the Simulink distribution; (ii) run
experiments on very similar machines, i.e., multiple 3.0
GHz, 8GB RAM Intel hyperthreaded Quad Core Linux PCs.

The FCS has three sensors subject to faults (disturbances).
We verify one of the system level specifications for such
a model, namely: the fuel air model variable is never 0
for more than one second. Accordingly, our SUV consists
of the Simulink FCS model along with a monitor for the
property under verification. In our setting, the complexity
of the computation of an optimised simulation campaign
primarily depends on the number of disturbance traces to
be simulated. Thus, the worst case for our approach is when
all disturbance traces have to be simulated, i.e., when the
answer to the SLFV problem is PASS . We know that this
is the case when no more than one fault occurs within a
second. Thus, this will be our disturbance model. We set the
disturbance traces horizon h to 100 and τ (quantum between
disturbances) to 1 second.

A. Generation and splitting of simulation scenarios
As [1], we use CMurphi to generate a labelled lexico-

graphically ordered sequence ∆λ of 4,023,955 disturbance
traces. This takes about 28 minutes and produces a 3.5GB
file. We then split such a ∆λ into kc slices, with k =
8, 16, 32, 64 and c = 8. Splitting takes a few seconds,
regardless of the value of kc.
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#traces scSLFV mcSLFV time
#slices per slice optimiser optimiser saving %

1 4,023,955 20:27:26 0:7:16 99.41%
2 2,011,977 3:47:57 0:9:43 95.74%
4 1,005,988 1:45:4 0:9:0 91.43%
8 502,994 0:44:27 0:5:27 87.74%

16 251,497 0:16:24 0:2:8 86.99%
32 125,748 0:4:50 0:0:57 80.34%
64 62,874 0:0:51 0:0:29 43.14%
128 31,437 0:0:35 0:0:17 51.43%
256 15,718 0:0:10 0:0:8 20.00%
512 7,859 0:0:5 0:0:4 20.00%

Table I: Comparison between scSLFV optimiser of [1] and
our mcSLFV optimiser (time in h:m:s).

#mach #slices min max avg stddev
avg % speedup efficiency

8 64 180:3:0 205:19:57 194:17:52 4.979% 54.63× 85.35%
16 128 70:6:4 100:17:53 87:49:56 13.772% 111.56× 87.15%
32 256 44:0:27 57:57:27 48:34:6 10.323% 192.38× 75.15
64 512 18:32:36 26:49:4 23:2:19 11.110% 411.83× 80.43%

Table II: Statistics on the distributed (k = #mach(ines))
multi-core (c = 8) execution of simulation campaigns (time
in h:m:s).

B. Computation of optimised simulation campaigns

Table I compares the performance of our mcSLFV opti-
miser with those of the scSLFV optimiser of [1]. Column
#slices gives the number of slices in which the sequence
of disturbance traces has been partitioned. Column #traces
per slice shows the number of traces in any single slice
(except the last slice, which may have up to #slices−1 more
traces, as the overall number of traces is not a multiple of
#slices). Columns scSLFV optimiser and mcSLFV optimiser
show the maximum time needed by, respectively, the [1] and
our optimisers to compute the simulation campaign from a
slice. For each row in Table I, the entry in column time
saving % is defined as (tsc − tmc)/tsc, where tsc and tmc
are, respectively, the entries in columns scSLFV optimiser
and mcSLFV optimiser.

Note that, by exploiting the lexicographical order among
traces in the input sequence, our mcSLFV optimiser is
always much faster than the scSLFV optimiser of [1].

C. Execution of the simulation campaigns

Table II shows some statistics on the execution time of the
simulation campaigns generated by our mcSLFV optimiser.
Note that the standard deviation of the simulation time is
always very small, always less than 15% with respect to the
average time (see column stddev/avg%). This shows that the
computational load among cores is well balanced.

Column speedup shows the ratios t1/tkc, typically used
in the evaluation of parallel algorithms. For each row
(k = #mach(ines)) of Table II, time tkc is the overall time

scSLFV mcSLFV

#machines #slices time #slices time time saving %

8 8 711:3:33 64 205:49:20 71.05%
16 16 343:24:27 128 100:47:4 70.65%
32 32 167:6:9 256 58:26:29 65.03%
64 64 81:49:3 512 27:18:2 66.63%

Table III: Completion time of the parallel simulation (i.e.,
completion time of the longest campaign) with respect to
the approach of [1] (time in h:m:s).

needed to carry out the SLFV task with k c-core machines,
i.e., the sum of the disturbance trace generation and splitting
time (about 28 minutes), optimisation time (from Table I),
and the max simulation time (column max) over all the
kc = #slices slices. Time t1 (serial time) is the overall
time needed to carry out the SLFV task when only one core
is used. Let tavg

kc be the average time to simulate a slice
where kc = #slices cores are used (row #mach(ines) = k,
column avg). When using kc cores, the serial time can
be estimated as kc × tavg

kc . As this value changes a little
bit for different values of k, we estimated serial time
t1 as min{64tavg

64 , 128tavg
128, 256tavg

256, 512tavg
512}. This leads to

t1 = 491.5 days. From such a huge value it follows that
estimation is the only viable way to compute t1. Note that
in our computation we are slightly overestimating the serial
time, since we are assuming that the first trace of each slice
must be simulated from the initial state. In an actual 1-
core execution of a simulation campaign, the optimiser may
exploit stored simulator states to avoid simulation of such
traces from the initial state. As the time to simulate a single
trace is of a few seconds, this is negligible with respect to
the value of t1.

Column efficiency in Table II is computed, as typically
done in the evaluation of parallel algorithms, by dividing the
speedup by the number of parallel processes kc = #slices.

In the same fashion, we can estimate the serial time and
efficiency of the scSLFV approach of [1]. Serial time is
about 200 days, and efficiency is higher than ours, being
almost 1. Our loss of efficiency stems from the fact that
processes running on different cores of the same machine
share the RAM.

Such an efficiency measure does not take into account
the cost of the hardware. In fact, to enable kc-parallel pro-
cesses, the scSLFV approach needs kc machines, whereas
our mcSLFV approach needs only k machines. Table III
investigates such an issue, by showing the time saving
realised by our mcSLFV approach. In particular, for each
value of k (#machines), columns scSLFV and mcSLFV show
the number of processes (#slices) that can be run on the
given machines and the time needed (time) to complete
the verification task with, respectively, the approach of [1]
and ours. For each row, the entry in column time sav-
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ing % is defined as (tsc − tmc)/tsc, where tsc and tmc
are, respectively, the entries in columns scSLFV time and
mcSLFV time. Table III shows that, when using the same
hardware, our distributed multi-core approach saves at least
65% of verification time. For example, using 64 machines,
the verification task using the single-core approach of [1]
would need 81 hours, while ours needs less than 27 hours.
Note that a serial approach to verification would need more
than 200 days.

VI. CONCLUSIONS

We have presented a distributed multi-core approach to
HILS-based SLFV. We have implemented our algorithms
and run experiments on a large control system case study
in the Simulink distribution, whose operational environment
consists of more than 4 million simulation scenarios. Our
distributed multi-core approach allows us to complete the
verification of such a system in about 27 hours using 64
8-core machines, whereas a sequential computation would
require more than 200 days.

To the best of our knowledge, this is the first time that
a distributed multi-core algorithm for HILS-based SLFV is
presented.
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