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Abstract—We present a parallel random exhaustive Hardware
In the Loop Simulation based model checker for hybrid systems
that, by simulating all operational scenarios exactly once in a
uniform random order, is able to provide, at any time during
the verification process, an upper bound to the probability that
the System Under Verification exhibits an error in a yet-to-be-
simulated scenario (Omission Probability).

We show effectiveness of the proposed approach by presenting
experimental results on System Level Formal Verification of the
Fuel Control System example in the Simulink distribution. To the
best of our knowledge, no previously published model checker
can exhaustively verify hybrid systems of such a size and provide
at any time an upper bound to the Omission Probability.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) consists of hardware and
software components and can be modelled as hybrid systems
(see, e.g., [4] and citations thereof). System Level Verification
of CPSs has the goal of verifying that the whole (i.e., software
+ hardware) system meets the given specifications. Model
checkers for hybrid systems cannot handle System Level
Formal Verification (SLFV) of actual CPSs. Thus, Hardware In
the Loop Simulation (HILS) is currently the main workhorse
for system level verification and is supported by Model Based
Design tools like Simulink (http://www.mathworks.com) and
VisSim (http://www.vissim.com). In HILS, the actual software
reads/sends values from/to mathematical models (simulation)
of the physical systems (e.g., engines, analog circuits, etc.) it
will be interacting with.

A. Motivations

SLFV is an exhaustive HILS where all relevant simulation
scenarios are considered. Using a parallel model checking
driven approach, exhaustive HILS enables formal verification
of actual systems such as the Fuel Control System (FCS) in
the Simulink distribution (e.g., see [1]).

Considering that parallel exhaustive HILS based SLFV
may take days of computation (e.g., see [1]), from a practical
point of view it would be very useful to have available at any
time during the verification process, quantitative information
about the degree of assurance attained. Such an information
would enable us to evaluate if it is worth to continue the veri-
fication activity, or instead stop it since the degree of assurance
attained can be considered adequate for the application at hand
(graceful degradation).

The above considerations suggest looking for a HILS based
model checking approach satisfying the following require-
ments: (i) it is parallel, in order to make exhaustive HILS

computationally feasible; (ii) it is exhaustive, since our focus
is SLFV; (iii) it is any time, to support graceful degradation.

The work in [2] presents a Propositional Satisfiability
(SAT) based model checker for finite state systems which
returns, at any time during the verification process, the cov-
erage (i.e., the fraction of operational scenarios verified so
far). Unfortunately, while coverage measures the amount of
verification work done, it does not provide any information
about the degree of assurance attained by the verification
process. This is because formal verification aims at finding
hard to find errors, i.e., errors that were not detected verifying
operational scenarios designed by experts. As a result, formal
verification addresses errors that we are unlikely to consider,
and we need to adopt an adversarial model where, knowing
our verification strategy, the adversary places the error in
operational scenarios we are less likely to visit. In such
a framework, any deterministic ordering of the operational
scenarios would not increase the degree of assurance until the
end of the verification (as the adversary would place the single
error as the last scenario picked by the verification procedure).

To provide a formally sound information about the degree
of assurance attained by the verification process, approaches
have been proposed which verify the operational scenarios
in a random order. In particular, the work in [3] presents
a Monte-Carlo based model checker for finite state systems
that provides, at any time during the verification process,
an upper bound to the probability that the System Under
Verification (SUV) exhibits an error in a yet-to-be-simulated
scenario (Omission Probability). The Omission Probability
(OP) provides indeed the information we are looking for.
Unfortunately, while Monte-Carlo based approaches guarantee
randomness (thereby enabling OP computation) they are not
exhaustive (within a finite time).

To the best of our knowledge, no model checker is avail-
able, neither for finite state systems nor for hybrid systems,
which, at the same time, is both random and exhaustive,
thereby enabling effective anytime SLFV. In this paper we
advance the state of the art by presenting a parallel random
exhaustive HILS based model checker along with experimental
results showing its effectiveness.

B. Main Contribution

Our SUV is a Hybrid System (e.g., see [4] and citations
thereof) whose inputs belong to a finite set of uncontrollable
events (disturbances) modelling failures in sensors or actua-
tors, variations in the system parameters, etc. We focus on
deterministic systems (the typical case for control systems)
and model nondeterministic behaviours (such as faults) with
disturbances. Accordingly, in our framework, a simulation



scenario is just a finite sequence of disturbances and a simu-
lation campaign is a finite sequence of simulation instructions
(namely: save a simulation state, restore a saved simulation
state, remove a saved simulation state, inject a disturbance,
advance the simulation of a given time length).

A system is expected to withstand all disturbance sequen-
ces that may arise in its operational environment. Correctness
of a system is thus defined with respect to such admissible
disturbance sequences. In our setting, the set of admissible
disturbance sequences (disturbance model) can be defined as
the language accepted by a suitable Finite State Automaton,
which in turn can be defined using the modelling language of
any finite state model checker.

In such a framework we address Bounded SLFV of safety
properties. That is, given a time step τ (time quantum between
disturbances) and a time horizon T = τh we return PASS if
there is no admissible disturbance sequence of length h and
time step τ that violates the given safety property. We return
FAIL , along with a counterexample, otherwise. Therefore,
SLFV is an exhaustive (with respect to admissible disturbance
sequences) HILS. In other words, we are aiming at (black box)
bounded model checking where the SUV behaviour is defined
by a simulator (Simulink in our examples).

In such a setting, our main contributions can be summarised
as follows. We present an anytime parallel random exhaustive
HILS based model checker that effectively conjugates exhaus-
tiveness with randomness, thereby enabling OP computation.
By observing that, in our setting, simulation of operational
scenarios takes more than 98% of the verification time (see
Fig. 6) we proceed as follows.

First, from the disturbance model we generate all admis-
sible simulation scenarios and evenly split them into disjoint
sets (slices). We do this along the lines of [1].

Second, for each slice, we compute a highly optimised sim-
ulation campaign that exploits simulator save/restore/remove
commands in order to save on the simulation time while
scheduling execution of all simulation scenarios exactly once
and in a uniform random order. This guarantees exhaustiveness
and allows us to compute, at any time during the verification
process, an upper bound to the OP. We note that this step
is made possible by the fact that we have first generated all
admissible simulation scenarios.

Third, we run simulation campaigns in parallel. This guar-
antees a very efficient parallelism, since no communication
among processes is needed. This step is supported by simula-
tion tools (Simulink in our examples).

Devising an effective simulation campaign optimisation
algorithm (the second step above) is the main obstacle to
overcome in our setting. Note in fact that, when disturbance
sequences are simulated in a lexicographic order (as in [1]),
sequences with a common prefix tend to be close to each
other in the simulation order. This in turn enables saving of
the simulation state at the end of the common prefix, and
restoring of such a state when a new scenario, with the same
prefix, is presented. When simulating disturbance sequences in
a random order, sequences with a common prefix may be quite
far apart in the simulation order. Thus, unless we store far too
many simulation states (impossible, since each simulation state
can easily take hundreds of KBytes), it becomes hard to take
advantage of common prefixes of disturbance sequences.

C. Experimental Results

We implemented our approach and present (Section V) ex-
perimental results on the Fuel Control System (FCS) example
in the Simulink distribution. SLFV for this case study entails
running more than 4 million simulation scenarios.

Each processor (actually, a core of a 8-core machine) runs
an instance of our optimisation algorithm and takes as input
a slice of our set of simulation scenarios. We present experi-
mental results with 16, 32, 64 machines totalling 128, 256, 512
parallel processes. Our optimiser takes just a few minutes
to generate a simulation campaign for a given slice (see
Section V-B). Simulation scenario generation and optimisation
takes less than 2% of the total verification time.

Our experimental results show that, by exploiting paral-
lelism, our simulation campaign optimisation algorithm effec-
tively counteracts the simulation time overhead due to the
random exhaustive simulation order. For example, with 128
cores our simulation time overhead is about 247% with respect
to the deterministic simulation campaign computed by the opti-
miser in [1], whereas, when using 512 cores, such an overhead
becomes less than 10%. The above ensures feasibility of our
parallel random exhaustive approach for actual systems, such
as the Fuel Control System (FCS) example in the Simulink
distribution.

As for the OP, the worst case scenario is when just one
error trace (out of 4 million in our case study) is present.
Our experimental results (Section V-D) show that even in such
a case our upper bound to the OP decreases about linearly
with respect to the coverage (i.e., the fraction of scenarios
simulated). This is the best one can hope for in our setting.

Finally, simulation of scenarios in random order allows us
to use the coverage as a reliable estimator for the completion
time of the whole verification task. Our experimental results
show that, when the coverage is greater than 30%, the error in
the completion time estimation is less than 20% (Section V-E).

D. Paper Outline

Section II gives background notions to make our paper
self-contained. Section III presents our formal framework, by
formalising the notion of OP and by providing an upper bound
for it, computable from the number of the yet-to-be-simulated
traces in each slice. Section IV outlines our algorithm to
compute, from a sequence (slice) of disturbance traces, a
highly optimised simulation campaign which simulates the
input traces in uniform random order and exploits the save
/restore/remove capabilities of the simulator. Finally, Section V
presents experimental results assessing effectiveness of our
approach.

II. BACKGROUND

In this section we give some background notions. Unless
otherwise stated, all definitions are based on [1], [5]. Through-
out the paper, we use R≥0 for the set of non-negative reals,
R+ for the set of strictly positive reals, and Bool = {0, 1}
for the set of Boolean values (0 for false and 1 for true). N+

denotes the set of positive natural numbers.
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Fig. 1: (a) A discrete event sequence (d = 3); (b) Our SUV
embedding a monitor; (c) The SUV monitor output.

A. Modelling the Operational Environment

Our System Under Verification (SUV) is a Discrete Event
System (DES), namely a continuous time Input-State-Output
deterministic dynamical system [5] whose inputs are discrete
event sequences. A discrete event sequence is a function
u(t) associating to each (continuous) time instant t ∈ R+

a disturbance event (or, simply, disturbance). Disturbances,
encoded by integers in the interval [0, d] (for a given d ∈ N+),
represent uncontrollable events (e.g., faults). We use event 0
to represent the event carrying no disturbance. As no system
can withstand an infinite number of disturbances within a finite
time, we require that, in any time interval of finite length, a
discrete event sequence u(t) differs from 0 only in a finite
number of time points (Fig. 1a).

System level verification follows an Assume-Guarantee
approach aimed at showing that the SUV meets its specifica-
tion (Guarantee) as long as the SUV operational environment
behaves as expected (Assume). As we focus on bounded
system level verification, we model (Definition 1) the SUV
operational environment as the sequence of disturbances our
SUV is expected to withstand within a finite time horizon.
We also bound the time quantum between two consecutive
disturbances.

Definition 1 (Disturbance trace): Let h, d ∈ N+. An
(h, d) disturbance trace δ is a finite sequence δ : [0, h− 1]→
[0, d]. Given τ ∈ R+ (time quantum), to an (h, d) disturbance
trace δ we can univocally associate a discrete event sequence
uτδ , defined as follows: for all t ∈ R≥0, if there exists
j ∈ [0, h− 1] such that t = τj then uτδ (t) = δ(j), else uτδ (t) =
0 (no disturbance).

Thus a disturbance trace δ defines an operational scenario
(namely, uτδ ) for our SUV. Fig. 2d shows the discrete event
sequence associated to a disturbance trace. We represent our
SUV operational environment as a finite set of (h, d) distur-
bance traces ∆ = {δ0, . . . , δn−1}, since Uτ∆ = {uτδ0 , . . . ,
uτδn−1

} (for a given τ ∈ R+) defines the operational scenarios
our SUV should withstand. Note that, by taking h large enough
(as in Bounded Model Checking (BMC)) and τ small enough
(to faithfully model our SUV operational scenarios), we can
achieve any desired precision. On such considerations rests the
effectiveness of the approach.

As it is typically infeasible to define a SUV operational
environment by explicitly listing all its disturbance traces, we
define an operational environment with a disturbance model
which is in turn defined as the language accepted by a suitable
Finite State Automaton. The following example clarifies this
point.

Example 1: Consider a disturbance model consisting of
one disturbance (namely, a fault) which is always recov-
ered within 4 seconds. Between two consecutive disturbances
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Fig. 2: (a) Disturbance model; (b) CMurphi-based disturbance
generator; (c) Generated sequence of disturbance traces (d =
3, h = 6); (d) The discrete event sequence associated to the
trace in the black rectangle in part (c), given time quantum τ .
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function disturbanceModel(h)
c← 0; /* counter */
t← 0; /* time */
while t ≤ h do

d← read(); t← t + 1;
if c > 0 then c← c− 1;
if d = 1 then

if c > 0 then return ⊗;
else c← 4;

return
√

;
end

(b)

Fig. 3: Example 1: (a) Admissible disturbance traces (
√

) and
shortest disturbance sequences that cannot be extended to an
admissible disturbance trace (⊗); (b) Finite state automaton
recognising the language of admissible disturbance traces
(disturbance model).

(faults) there must be at least 5 seconds. We assume that
disturbances can arise only at time steps multiple of τ = 1
second (time quantum). We also set the verification time
horizon to 6 seconds. In Fig. 3a we show disturbance traces
represented as strings of zeros (no disturbance) and ones
(disturbance), with time flowing from left to right. Strings
terminated by

√
denote all the disturbance traces accepted by

the disturbance model (admissible disturbance traces). Strings
terminated by⊗ are the shortest sequences of disturbances that
cannot be extended to an admissible disturbance trace. Fig. 3b
shows pseudo-code for a finite state automaton recognising
such a language.

We define a finite state automaton for a disturbance model
using the modelling language of a finite state model checker
(namely, CMurphi [6]), along the lines of [1].

B. Modelling the Property to be Verified

Along the lines of [7], we model the property to be verified
with a continuous-time monitor which observes the state of the
system to be verified and checks whether the property under
verification is satisfied (Fig. 1b). The output of the monitor
is 0 as long as the property under verification is satisfied and
becomes and stays 1 (sustain) as soon as the property fails,
thus ensuring that we never miss a property failure report, even
when sampling the monitor output only at discrete time points
(Fig. 1c). The use of monitors gives us a flexible approach
to model the property to be verified. In particular, it is easy



to model bounded safety and bounded liveness properties as
monitors.

C. Modelling the SUV

Since the monitor output is all we need to carry out
our verification task, we can model our SUV along with the
property to be verified as a DES with an embedded monitor
(Fig. 1b). We call Monitored Discrete Event System (MDES)
such a DES.

According to our black-box approach to SUV modelling,
given a time quantum τ ∈ R+, Definition 2 formalises an
(h, d) MDES as a function H associating, to each (h, d)
disturbance trace δ, a Boolean value H(δ) representing the
output of the SUV monitor at time T = τh (the time horizon),
when the system (starting from its initial state) is given as
input the discrete event sequence uτδ (t) associated to δ. For
any disturbance trace δ, H(δ) is 1 (error) if and only if uτδ (t)
violates the property under verification within time horizon
T = τh (with the SUV starting from its initial state).

Definition 2 ((h, d) MDES): Let h, d ∈ N+. A (h, d)
Monitored Discrete Event System (MDES) is a function H :
([0, h− 1]→ [0, d]) → Bool mapping all (h, d) disturbance
traces to Boolean values.

D. System Level Formal Verification

Definition 3 formalises our bounded System Level Formal
Verification problem.

Definition 3: A System Level Formal Verification (SLFV)
problem is a tuple P = (h, d, ∆, H) where: h, d ∈ N+, ∆ =
{δ0, . . . , δn−1} is an (h, d) set of disturbance traces, and H
is a (h, d) MDES.

The answer to SLFV problem P is FAIL if there exists a
disturbance trace δ in ∆ such that H(δ) = 1 (in such a case
also the counterexample δ is returned), PASS otherwise.

Note that, notwithstanding the fact that the number of states
of our SUV is infinite and we are in a continuous time setting,
to answer a SLFV problem we only need to check a finite
number of disturbance traces. This is because we are bounding:
(a) our time horizon to T = τh, and (b) the set of time points
at which disturbances can take place, by taking τ as the time
quantum among disturbance events.

E. Parallel HILS based SLFV

In our black-box parallel approach, the MDES H defining
our SUV (plus the property to be verified) is defined using the
modelling language of a suitable simulator (e.g., MatLab and
Stateflow for Simulink). We compute the answer to a SLFV
problem (h, d, ∆, H) by simulating each operational scenario
δ in the operational environment ∆, thus by performing an ex-
haustive (with respect to ∆) Hardware In the Loop Simulation
(HILS).

In order to enable parallel computation, we evenly partition
the sequence of disturbance traces ∆ into k ∈ N+ sequences
of disturbance traces ∆0, . . . , ∆k−1. We then use such k
slices to compute, in parallel, k highly optimised simulation
campaigns (Fig. 4b), which can be simulated in parallel using
k simulators, each one running (on a different core of our
multiple machines) a model for H (Fig. 4c–d). The answer to
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Fig. 4: Our approach to parallel SLFV: k parallel processes are
run on m multi-core machines (we show a possible deployment
with machines having c cores each, i.e., k = mc).

the SLFV problem is FAIL if one of the simulation campaigns
raises the simulator output function to 1 (in this case the
disturbance trace δ which raised the error is returned as a
counterexample, see Fig. 4e). The answer is PASS otherwise.

Each simulator accepts four basic commands: store, load,
free, run. Command store(l) stores in memory the current state
of the simulator and labels with l such a state. Command
load(l) loads into the simulator the stored state labelled with l.
Command free(l) removes from the memory the state labelled
with l. Command run(e, t) (with e ∈ [0, d] and t ∈ R+)
injects disturbance e and then advances the simulation of time
t. A simulation campaign is thus a sequence of simulator
commands.

Using commands store and load we can avoid revisiting
simulation states (much as in explicit model checking). Using
command free we can remove from the memory states that
will never be needed in the remaining part of the simulation
campaign. This is needed since each state may require many
KB of memory (150–300 KB in the case study presented in
this paper).

III. OMISSION PROBABILITY

This section formally defines the notion of Omission Prob-
ability (OP) (Definitions 4 and 5) and provides an upper bound
for it, which can be computed anytime during the parallel
verification process from the number of the yet-to-be-simulated
traces in each slice (Theorem 1).

Notation 1 (Set of permutations of a set): Let ∆ = {δ0,
. . . , δn−1} be a finite non-empty set. We denote with Perm(∆)
the set of permutations of elements of ∆:

Perm(∆) =

{
(θ0, . . . , θn−1)

∣∣∣∣∣ (∀i ∈ [0, n− 1] θi ∈ ∆) ∧
(∀i, j ∈ [0, n− 1]

i 6= j → θi 6= θj)

}

If ∆̂ = (δ0, . . . , δn−1) ∈ Perm(∆) we write also ∆̂(i) for δi.

A Random Sequence Generator (RSG) models the extrac-
tion of a random permutation from any given finite non-empty
set (which, in our case, will be the set of admissible disturbance
traces ∆). This is formalised in Definition 4.



Definition 4 (Random Sequence Generator): Let ∆ be a
finite non-empty set. A Random Sequence Generator (RSG)
for ∆ is a probability space (Ω,F , P ), where:

• Ω (the space of outcomes) is the set of permutations of
∆, that is Ω = Perm(∆).

• F (the space of events) is the set of subsets of Ω, that is:
F = 2Ω = {E | E ⊆ Ω}.

• P : F → [0, 1] is a probability measure such that,
for all ω ∈ Ω, P (ω) = 1

|∆|! . That is, permutations of
∆ are extracted with uniform probability. Since Ω is
countable (actually finite), the probability of any event
E = {ω1, . . . , ωw} is defined as P (E) =

∑
ω∈E P (ω).

Let (∆0, . . . , ∆k−1) be a partition of ∆ into k ∈ N+

disjoint non-empty sets. For any 0 ≤ i < k, let (Ωi,Fi, Pi) be
an RSG for ∆i. A Random Sequence Generator for (∆0, . . . ,
∆k−1) is a probability space (Ω,F , P ), where: Ω = ×k−1

i=0 Ωi,
F = ×k−1

i=0 Fi and, for each event E0×· · ·×Ek−1 ∈ F (Ei ∈
Fi for each 0 ≤ i < k), P (E0× · · · ×Ek−1) =

∏k−1
i=0 Pi(Ei).

Note that, by Definition 4, a RSG for a partition (∆0, . . . ,
∆k−1) of ∆ models the extraction of k permutations of,
respectively, ∆0, . . . , ∆k−1. For all 0 ≤ i < k, the extracted
permutation of ∆i is chosen uniformly among all possible
permutations of ∆i. Also, the k permutations are extracted
independently from each other.

Let (q0, . . . , qk−1) be a tuple of integers, with qi ∈ {0, . . . ,
|∆i|} for each 0 ≤ i < k. Definition 5 defines the probability
of omitting the simulation of a trace δ̄ ∈ ∆ containing an error
(i.e., H(δ̄) = 1) when the verification process has already
examined, for all 0 ≤ i < k, qi disturbance traces from
a random permutation of slice ∆i. This is called Omission
Probability (OP).

Definition 5 (Omission Probability): Let (h, d, ∆, H) be
a System Level Formal Verification (SLFV) problem and
(∆0, . . . , ∆k−1) be a partition of ∆ into k ∈ N+ disjoint non-
empty sets. Let (Ω,F , P ) be an RSG for (∆0, . . . , ∆k−1), and
(q0, . . . , qk−1) a tuple such that qi ∈ {0, . . . , |∆i|} for each
0 ≤ i < k.

The Omission Probability (OP) for (∆0, . . . , ∆k−1) at
stage (q0, . . . , qk−1), denoted as OPH(|∆0|, . . . , |∆k−1|, q0,
. . . , qk−1) is defined as:

P


(ω0,...,ωk−1)

∣∣∣∣∣∣∣
∀i ∈ [0,k − 1] ωi ∈ Ωi ∧
A((ω0,...,ωk−1),(q0,...,qk−1))
∧
B((ω0,...,ωk−1),(q0,...,qk−1))




where A (After) and B (Before) are defined as follows:

A((ω0, . . . , ωk−1), (q0, . . . , qk−1)) =

∃i ∈ [0, k − 1] ∃j ∈ [qi, |∆i|] H(ωi(j)) = 1;

B((ω0, . . . , ωk−1), (q0, . . . , qk−1)) =

∀i ∈ [0, k − 1] ∀j ∈ [0, qi − 1] H(ωi(j)) = 0.

In Definition 5, formula A (After) states that there exists a
yet-to-be-simulated trace δ̄ (some trace j ≥ qi of some slice i)
containing an error, i.e., such thatH(δ̄) evaluates to 1. Formula
B (Before) states that none of the already simulated traces
contains an error, i.e., function H evaluates to 0 for all of
them.

The following Theorem 1 (proof omitted for lack of space)
gives an upper bound to the OP, after having simulated qi
randomly extracted traces from slice ∆i (for each 0 ≤ i < k).
Importantly, the bound provided does not depend on H, i.e.,
it is independent of the system model.

Theorem 1: Let (h, d, ∆, H) be a SLFV problem and
(∆0, . . . , ∆k−1) be a partition of ∆ into k ∈ N+ disjoint non-
empty sets. Let (Ω,F , P ) be a Random Sequence Generator
(RSG) for (∆0, . . . , ∆k−1) and (q0, . . . , qk−1) a tuple such
that qi ∈ {0, . . . , |∆i|} for each 0 ≤ i < k. We have:

OPH(|∆0|,...,|∆k−1|,q0,...,qk−1)≤1−min

{
qi
|∆i|

∣∣∣∣0≤i<k}.
Note that the construction of the slices ∆0, . . . ,∆k−1 from

∆ is non-deterministic (i.e., any partitioning of ∆ would
work), whereas, for each slice, the selection of a permutation
is a probabilistic process, modelled as a RSG. Accordingly,
Theorem 1 bounds the OP using the worst case distribution,
i.e., the distribution yielding the greatest OP. From this stems
the min function in the expression of Theorem 1.

Finally, we observe that, from Theorem 1, it follows that
OPH(|∆0|, . . . , |∆k−1|, |∆0|, . . . , |∆k−1|) = 0, that is, our
verification task terminates after max{|∆i| | 0 ≤ i < k}
parallel steps, having simulated all traces in ∆.

IV. RANDOM EXHAUSTIVE CAMPAIGNS

In this section we give more details on our CMurphi-
based disturbance trace generator (Section IV-A) and splitter
(Section IV-B), and present our simulation campaign optimiser
(Section IV-C) which enables random exhaustive parallel Sys-
tem Level Formal Verification (SLFV).

A. Disturbance Trace Generation

Our CMurphi-based trace generator (see Section II-A and
Fig. 4a) works in Depth-First Search (DFS) mode, and hence
produces a sequence ∆ of n disturbance traces in lexicographic
order. Furthermore, each generated trace δ in ∆ is annotated
with labels and is of the form δ = (l0, d0, l1, d1, . . . ,
lh−1, dh−1, lh), where δ = (d0, . . . , dh−1) is a sequence of
disturbances satisfying the disturbance model and l0, . . . , lh
belong to a countable set of labels L (e.g., N+). Labels are
defined by an injective map λ from finite sequences of distur-
bances (including the empty sequence) to L. As a consequence,
prefixes of disturbance sequences (d̂0, . . . , d̂p−1) common to
multiple disturbance traces in ∆ are followed by the same label
l̂p = λ(d̂0, . . . , d̂p−1) (see Fig. 5). Labels identifying common
disturbance prefixes are essential in the efficient computation
of highly optimised simulation campaigns, as they allow to
decide which states of the simulators should be stored, as
they may be needed later (see the LBT construction phase
of our optimiser). Note that, given that our CMurphi-based
generator runs in DFS mode, disturbance traces (which are
lexicographically ordered) can be labelled at no additional
computational cost during generation, as shown in [1]. Trace
labelling during generation greatly increases the efficiency of
the optimiser.

In the following, we will use ∆λ instead of ∆ when we
want to emphasise that traces in ∆ are annotated with labels,
or when we need such labels.



Algorithm 1: Optimiser pseudo-code
Input: ∆λ, a file holding a labelled lex-ordered sequence of

disturbance traces
Output: χ, the computed simulation campaign

1 χ← an empty sequence of commands;
2 LBT← buildLBT(∆λ);
3 ∆λ

rnd ← rsg(∆λ);
4 lastTraces← a map associating to each label l ∈ LBT the index of

the last trace in ∆λ
rnd where l occurs;

5 stored← empty set of labels ; /* invariant: stored ⊆ LBT */
6 l0 ← first label common to all traces;
7 append store(l0) to χ;
8 stored← stored ∪ {l0};
9 foreach δλ in ∆λ

rnd do
10 lload ← right-most label of δλ in stored;
11 append load (lload) to χ;
12 append free(l) to χ for each label l ∈ stored which will never

occur in later traces (according to lastTraces);
13 append to χ commands to simulate δλ (from lload) and to store any

intermediate states needed to speed-up simulation of later traces;
14 return χ;

B. Disturbance Trace Splitting

The computed lexicographically ordered sequence of la-
belled disturbance traces ∆λ is split (see Section II-E) into k
disjoint sequences (slices) in order to enable parallel verifica-
tion via k parallel processes. The splitting process produces
slices containing s = bn/kc traces each (except the last
slice, which may contain up to k − 1 more traces if n is
not a multiple of k), placing trace 0 ≤ i < n into slice
min{bi/sc, k−1}. Hence each slice contains traces which are
close in the lexicographic ordering. This is important as the
optimisation stage is concerned: lexicographically close traces
often have long common prefixes, and this allows the optimiser
to compute a more efficient simulation campaign within the
restrictions on the number of states that each simulator can
keep simultaneously stored (when compared to the campaign
that could be computed if each slice contained bn/kc traces
arbitrarily chosen within the whole set).

C. Simulation Campaign Optimiser

Given a sequence (in particular, a slice) of (h, d) distur-
bance traces ∆λ in lexicographic order, our optimiser (see
Fig. 4b) computes a simulation campaign which executes them
in a random order uniformly chosen among all possible orders
(thus, implementing a Random Sequence Generator (RSG)).
The computed campaign is abstract in that, for all commands
of the form run(e, t), t is a natural number and not an actual
time duration. By providing a time step τ ∈ R+, χ can
be instantiated into a concrete simulation campaign χτ , by
replacing all run(e, t) commands by run(e, tτ).

Our simulation campaign optimiser is sketched as Algo-
rithm 1. As the input sequence ∆λ of disturbance traces can
be too big to be kept in main memory, our optimiser is a disk-
based algorithm which makes a careful use of the available
RAM and reads the input file sequentially multiple times. In
the first scan of ∆λ, the optimiser builds a data structure called
Labels Branching Tree (LBT) as completely as possible within
the available RAM. Afterwards, it randomises ∆λ producing a
random permutation ∆λ

rnd uniformly chosen among all possible
permutations. Finally, it reads ∆λ

rnd to produce the abstract
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Fig. 5: Simulation campaign optimiser: construction of an
LBT from 6 labelled traces in lex order, random sequence
generation, and generation of the optimised campaign. Labels
are shown as red letters and disturbances as blue numbers.

simulation campaign from the LBT according to the chosen
random order.

1) LBT Construction: The LBT is a tree of labels rooted
at l0, the first label of all traces (e.g., l0 = a in Fig. 5).
The LBT collects branching labels, i.e., labels li for which
there exist at least two labelled disturbance traces δλ =
(l0, d0, . . . , li, di, . . . , lh) and δλ

′
= (l0, d0, . . . , li, d

′
i, . . . , l

′
h)

in ∆λ which have the same prefix up to li and such that
di 6= d′i. Branching labels represent simulator states whose
storing may save simulation time (by loading them back later).
Label lj is a child of li in the LBT iff, for all δλ = (l0, d0,
. . . , li, . . . , lj , . . . , lh) ∈ ∆λ, no lk in δλ with i < k < j is in
the LBT (note: all such δλ are identical at least up to lj).

The construction of the LBT is shown as function
buildLBT() in Algorithm 2. The function scans the input
slice in order to recognise branching labels, keeping in array
watched the labels of the last processed trace. In fact, as the
traces in ∆λ are lexicographically ordered, these are the only
labels that may become branching when processing a new
trace. To see why, assume that the optimiser is processing,
e.g., trace 2 in Fig. 5 (top left). As this trace starts to be
different with respect to the previous trace (trace 1) from the
disturbance at step 2 (i.e., disturbance 2 right after label c),
the optimiser infers that labels d, e, f, g of trace 1 will never
occur in later traces of ∆λ, and will never become branching.

As for the actual recognition of a new branching label and
its addition to the LBT, assume that function buildLBT() is
processing disturbance trace δλ (line 7). Variable llbt is the
right-most label in δλ already in the LBT, and lw is the right-
most label in δλ which belongs also to array watched. As l0
is put both in the LBT and in watched[0] at the beginning,
both values are always defined. The algorithm infers that the
current trace is identical to the previously processed trace up
to lw, but differs from it after that point. If lw = llbt, label lw
is already branching, and nothing has to be done. Otherwise,
the new label lw is recognised as branching, and is added to
the LBT as a child of llbt (as, given that the input traces are in
lexicographic order, lw 6= llbt implies that lw is on the right of
llbt in δλ). As llbt could already have children in the LBT, the
tree may need to be rearranged to accommodate the new label
lw. Given that the input traces are in lexicographic order, the
last task is very simple, as at most one child of llbt must be
moved. This child, if exists, must be a label that occurred in the
previous trace, i.e., it belongs to the watched array (line 11).



Algorithm 2: Function buildLBT()
1 function buildLBT(∆λ)
2 LBT← empty tree of labels;
3 watched← empty array [0..h− 1] of labels;
4 let l0 be the first label common to all traces in ∆λ;
5 set l0 as the root of LBT;
6 watched[0]← l0;
7 foreach δλ in ∆λ do
8 llbt ← right-most label in δλ in LBT;
9 lw ← right-most label in δλ in watched;

10 if llbt 6= lw then
11 move any child of llbt in LBT also belonging to watched as

to be child of lw;
12 add lw to LBT as child of llbt;
13 watched← [l0, . . . , lh−1];
14 return LBT;
15 end

Fig. 5 (top) shows an example of LBT construction starting
from a sequence of 6 labelled disturbance traces ∆λ. Out of
25 labels in ∆λ, only 5 of them belong to the LBT.

2) Random Sequence Generation: Once the LBT is built,
the optimiser calls function rsg() (pseudo-code omitted for lack
of space), which reads the input slice ∆λ again to compute a
random permutation ∆λ

rnd uniformly chosen among all pos-
sible permutations, thus implementing a RSG. The function
implements a disk-based multi-round algorithm which takes
efficiency into account by using, in each round, as much main
memory as possible and by reading/writing the input/output
trace files sequentially.

Let n = |∆λ| be the number of input disturbance traces.
Given parameter z for the maximum number of disturbance
traces which can be simultaneously stored in main memory, the
algorithm, at each round r ≥ 1, selects the z traces which will
have output positions in the interval [(r−1)z, min(n, rz−1)].
Such a selection is performed by computing the first z elements
of a random permutation of the traces not yet in the output file
∆λ

rnd, chosen uniformly among all possible permutations. The
z selected traces are then appended to ∆λ

rnd (according to their
output positions), all the others are dumped to a temporary
file, which becomes the input of the next round. Function rsg()
terminates in dn/ze rounds.

3) Simulation Campaign Computation: Once the random
order ∆λ

rnd with which the input disturbance traces ∆λ must
be simulated has been computed, the optimiser reads the
randomised input slice from disk two more times to compute
the abstract simulation campaign.

In the first scan of ∆λ
rnd, the optimiser computes (line 4 of

Algorithm 1), for each branching label l ∈ LBT, the position
of the last trace in ∆λ

rnd where it occurs. This information will
be important, during the second scan, to free-up the simulator
disk space as soon as possible.

In the second scan of ∆λ
rnd, the optimiser actually computes

the abstract simulation campaign χ, also keeping track of
which LBT labels are stored in simulator disk space at any
moment (set stored, line 5 of Algorithm 1).

For each δλ in ∆λ
rnd (line 9 of Algorithm 1), suitable

commands are appended to the output simulation campaign χ
to simulate δλ. Let lload be the right-most label of δλ currently
stored by the simulator. The optimiser appends to the output

campaign the following commands: (i) load(lload); (ii) free(l)
for each label l ∈ LBT which represents a currently stored state
that will never occur after trace δλ; (iii) a command of the form
run(d̂, steps) for each maximal sub-sequence of length steps in
δλ (starting from lload) of the form d̂, li1 , 0, li2 , . . . , 0, listeps d̃, l̃

where either d̃ 6= 0 or label l̃ needs to be stored. In the latter
case, command store(l̃) is appended as well. Label l̃ needs to
be stored if it is in the LBT but not yet stored and it will
occur again in a later trace. If the simulator disk space is full,
the algorithm frees it up by appending free commands to the
output simulation campaign χ, by selecting labels to free as
to minimise the simulation cost (number of steps) to drive the
simulator to the state they represent.

Fig. 5 (bottom) shows the simulation campaign computed
by the optimiser on the slice in Fig. 5 (top). Except for the first
command which stores a (the label common to all traces and
representing the simulator initial state), each line represents the
portion of the simulation campaign stemming from each trace.
Note that only the first trace is simulated entirely, while all
the others are simulated starting from intermediate, previously
stored, states.

D. Optimiser Soundness and Completeness

Given a SLFV problem P = (h, d, ∆, H), it can be shown
that function rsg() (see line 3 of Algorithm 1) computes a
permutation ∆λ

rnd of the input traces, extracted with uniform
probability among all possible permutations, and thus it effec-
tively implements a RSG.

Furthermore, it can be shown that Algorithm 1 computes
a simulation campaign χ which is sound and complete with
respect to ∆λ

rnd (or, equivalently, ∆λ). That is: if the answer to
P is PASS , then the output of the simulator at the end of the
execution of the simulation campaign χ will be 0 (soundness).
On the other hand, if the answer to P is FAIL and δ is the
first counterexample in ∆λ

rnd, then the output of the simulator
will raise from 0 to 1 during the simulation of a command of
χ stemming from δ (completeness). The result above can be
proved by formalising the notion of simulator for H along the
lines of [1].

V. EXPERIMENTAL RESULTS

In this section we evaluate the effectiveness of our ran-
dom exhaustive parallel approach to System Level Formal
Verification (in short rSLFV) as follows. First, we evaluate
the overhead due to the randomisation of disturbance traces
needed to enable computation of Omission Probability (OP),
by comparing our rSLFV approach with the deterministic
parallel approach (in short dSLFV) of [1]. Second, we evaluate
the behaviour of the coverage and the OP bound with respect
to simulation time. Third, we evaluate speed-up and efficiency
of our parallel approach.

We use the same case study of [1], [8], i.e., the Fuel Control
System (FCS) model included in the Simulink distribution.
The FCS has three sensors subject to faults (disturbances).
We verify one of the system level specifications for such a
model, namely: the fuel_air model variable is never 0 for more
than one second. Accordingly, our System Under Verification
(SUV) consists of the Simulink FCS model along with a
monitor for the property under verification. In our setting,
the complexity of the computation of an optimised simulation



campaign primarily depends on the number of disturbance
traces to be simulated. Thus, the worst case for our approach
is when all disturbance traces have to be simulated, i.e., when
the answer to the System Level Formal Verification (SLFV)
problem is PASS . We know that this is the case when no
more than one fault occurs within a second. Thus, this will be
our disturbance model. We set the disturbance traces horizon
h to 100 and τ (quantum between disturbances) to 1 second.

We ran experiments on multiple Linux PCs, each one
equipped with 2 Intel Xeon 3.0 GHz CPUs with 4 cores
each and 8 GB RAM. We executed 8 processes (optimisation
and simulation) in parallel (one per available core) on each
machine. As, in a multi-core setting, the local disk may
quickly become a performance bottleneck if heavily used by
multiple processes, we have replaced it with 8 RAM disks
of 500 MB each per machine, in order to store simulation
states. Accordingly, we have used the multi-core version of
the dSLFV optimiser of [1] as presented in [9]. Given that, in
our case study, the size of the simulation state files is of about
150–300 KB, this experimental setting allowed our optimiser
to count on the possibility, for each simulator, to keep at most
1800 states simultaneously stored.

A. Disturbance Trace Generation and Splitting

As [1], we use CMurphi to generate a lexicographically
ordered sequence ∆ of (labelled) admissible disturbance traces.
The generator produces 4,023,955 traces in about 28 minutes
and saves them in a 3.5GB file. We then split such a ∆ into k
slices, with k = 128, 256, 512 to enable parallel computation
on, respectively, 16, 32, 64 (8-core) machines. Splitting takes
a few seconds, regardless of the value of k.

B. Computation of Simulation Campaigns

Table in Fig. 6a compares the performance of our rSLFV
optimiser against the dSLFV optimiser. Column #slices gives
the number of slices in which the sequence of admissible
disturbance traces has been partitioned. Column #traces per
slice shows the number of traces in any single slice (except the
last slice, which may have up to #slices−1 more traces, as the
overall number of traces is not a multiple of #slices). Columns
dSLFV optimiser and rSLFV optimiser show the maximum
time needed by, respectively, the deterministic and the random
optimisers to compute the simulation campaign from a slice.

The random sequence generation phase makes the rSLFV
optimisation process longer than that for dSLFV. The dif-
ference is, however, negligible with respect to the whole
verification time (many hours, as described below).

C. Execution of the Simulation Campaigns

Table in Fig. 6b shows the execution time of the simulation
campaigns generated by dSLFV and rSLFV optimisers.

The price to pay (in terms of simulation time) to enable
computation of the OP during the simulation activity is quite
significant (+247.83%) as for k = #slices = 128, but can be
drastically mitigated, if not neutralised, by using more parallel
processes (higher values for k = #slices). This behaviour is
due to the fact that the rSLFV optimiser needs to compute
a simulation campaign under the restriction that the number
of states that the simulator can keep simultaneously stored
is at most 1800 (totalling about 500 MB). For high values

of k=#slices (e.g., k = 512), this is not a big obstacle. On
the other hand, for lower values of k, the number of traces in
each slice is higher and they share shorter common prefixes on
average. Hence, a fully-optimised random order execution of
them would need a too high number of simulation states to be
simultaneously kept stored. As a consequence, the optimiser
is forced to post free commands for many simulation states
which would be needed again in yet-to-be-simulated traces.
Such traces will then be simulated from the simulator initial
state, thus yielding performance degradation.

Column speedup shows the ratios t1/tk, typically used in
the evaluation of parallel algorithms, for both dSLFV and
rSLFV. For each row (k = #slices) of the table in Fig. 6b,
time tk is the overall time needed to carry out the SLFV task
with k parallel processes, i.e., the sum of the disturbance trace
generation and splitting time (about 28 minutes), optimisation
time (from the table in Fig. 6a), and the max simulation time
(column max) over all the k = #slices slices. Time t1 (serial
time) is the overall time needed to carry out the SLFV task
when only one parallel process is used. Let tavg

k be the average
time to simulate a slice where k = #slices parallel processes
are used (row #slices = k, column avg). For any value of k,
the serial time can be estimated as k × tavg

k . As this value
changes a little bit for different values of k, we estimated
serial time t1 as min{128tavg

128, 256tavg
256, 512tavg

512}. This leads
to t1 ≈ 470 days as for dSLFV and t1 ≈ 570 days as for
rSLFV (such huge values make clear that estimation is the only
viable way to compute t1). Note that in our computation we are
slightly overestimating the serial time, since we are assuming
that some traces of each slice must be simulated from the
initial state. In an actual 1-process execution of a simulation
campaign, the optimiser may exploit stored simulator states to
avoid simulation of such traces from the initial state. As the
time to simulate a single trace is of a few seconds and the
simulator can keep only 1800 stored states, this is negligible
with respect to the value of t1.

Column efficiency in the table in Fig. 6b is computed,
as typically done in the evaluation of parallel algorithms,
by dividing the speedup by the number of parallel processes
k = #slices. Analogously to the speed-up, also here, the higher
values of k the lower the overhead.

The overhead due to randomisation in terms of speedup
and efficiency reduction are also shown in Fig. 6f–g.

D. Omission Probability Computation

Fig. 6c shows how our upper bound to the OP decreases
as a function of the coverage (i.e., the ratio of admissible
traces simulated) for k = 128, 256, 512. It can be observed that
our OP bound is always very close to the ratio of yet-to-be-
simulated traces, which is the best one can do (i.e., using only
one parallel process) without any assumption on the number
of error traces.

E. Completion Time Estimation

Fig. 6d shows that the OP bound decreases nearly linearly
in time. The same happens with the coverage, which can thus
be used as a reliable estimator for the completion time of the
whole verification process. Fig. 6e shows the error percentage
(on the true completion time) made by a completion time
estimation based on the coverage. For each value x of the



#slices #traces dSLFV rSLFV
per slice optimiser optimiser

1 4,023,955 0:7:16 0:35:35
2 2,011,977 0:9:43 0:16:33
4 1,005,988 0:9:0 0:8:37
8 502,994 0:5:27 0:3:42

16 251,497 0:2:8 0:2:51
32 125,748 0:0:57 0:2:36
64 62,874 0:0:29 0:1:21
128 31,437 0:0:17 0:1:44
256 15,718 0:0:8 0:0:42
512 7,859 0:0:4 0:0:13

(a) Computation of simulation campaigns (time in h:m:s)

#mach. #slices min max avg speedup efficiency approach

16 128 70:6:4 100:17:53 87:49:56 111.56× 87.15% dSLFV
216:42:13 348:51:47 308:46:18 39.17× 30.60% rSLFV

+209.13% +247.83% +251.55% +64.89% +56.55% overhead

32 256 44:0:27 57:57:27 48:34:6 192.38× 75.15% dSLFV
63:53:54 136:18:14 108:14:19 100.03× 39.08% rSLFV

+45.20% +135.18% +122.86% +48.00% +36.07% overhead

64 512 18:32:36 26:49:4 23:2:19 411.83× 80.43% dSLFV
22:9:19 29:23:33 26:43:31 458.01× 89.46% rSLFV

+19.48% +9.60% +16.00% −11.21% −9.03% overhead

(b) Parallel execution of simulation campaigns by dSLFV and rSLFV (time in h:m:s)
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Fig. 6: Experimental results

coverage, the error is computed as ((tx/x)− tc)/tc where tx
is the time elapsed to reach coverage x and tc is the true
completion time. It can be observed that such a completion
time estimation becomes accurate very quickly (e.g., when the
coverage is ≥ 30%, the error is below 20%).

VI. RELATED WORK

The work closest to ours is [1] where a parallel exhaustive
Hardware In the Loop Simulation (HILS) based hybrid system
model checking algorithm is presented. The main differences
with respect to [1] are the following. (i) Our simulation
campaign optimiser and the one in [1] both take as input
the admissible disturbance sequences (simulation scenarios)
in a lexicographic (Depth-First Search) order. However, the
optimiser in [1] returns a simulation campaign scheduling
scenarios in the very same order they had before optimisation,
whereas our optimiser schedules simulation of all scenarios
exactly once in a uniform random order. (ii) During the
verification process, [1] only outputs the attained coverage,
whereas, resting on the randomisation of the order with which
scenarios are scheduled, we also output the attained Omission
Probability (OP).

In a finite state (digital hardware verification) setting, the
work in [2] presents an algorithm to estimate the coverage
achieved during SAT based bounded model checking. Since
computation paths are not selected uniformly at random, [2]
does not provide any information about the OP.

Random model checking is a formal verification approach
closely related to our setting. A random model checker pro-
vides, at any time during the verification process, an upper
bound to the OP. Upon detection of an error, a random model
checker stops returning a counterexample. Random model
checking algorithms have been investigated, e.g., in [3], [10],

[11]. The main differences with respect to our approach are the
following. (i) All random model checkers generate simulation
scenarios using a sort of Monte-Carlo based random walk. As a
result, unlike our algorithm, none of them is exhaustive (within
a finite time horizon). (ii) Random model checkers (e.g., see
[3]) assume availability of a lower bound to the probability
of selecting (with a random-walk) an error trace. Of course,
being exhaustive, we do not have any such assumption.

The coverage yielded by random sampling a set of test
cases has been studied by mapping it to the Coupon Collector’s
Problem (CCP) (see, e.g., [12]). In CCP we randomly extract
elements (uniformly and with replacement) from a finite set
of n test cases (disturbance traces in out context). Known
results (see, e.g., [13]) tell us that the probability distribution
of the number of test cases to be extracted in order to collect
all n elements has expected value Θ(n log n), and a small
variance with known bounds. This would allow us to bound the
OP during the verification. Differently from such CCP-based
approaches, here we not only bound the OP, but also grant the
completion of our verification task within just n trials. This is
made possible by the fact that we first generate all disturbance
traces.

Monte-Carlo based robustness analysis of Cyber-Physical
Systems (CPSs) has been investigated in [14]. We note that,
within a finite time bound, we are exhaustive whereas the
approach in [14] is not. On the other hand, unlike out approach,
[14] also evaluates how robustly the given property holds.

Probabilistic (e.g., see [15], [16]) and, more specifically,
simulation-based statistical model checking approaches (e.g.,
see [8], [17]–[23]) are closely related to our work. In particular,
[8] addresses statistical model checking of Simulink models
and presents experimental results on the very same Simulink
case study we use here. The main differences between such



approaches and ours are the following. (i) Probabilistic model
checking is a white-box approach (a model is available),
whereas we are in a black-box setting (only a simulator
is available). Thus, only simulation-based statistical model
checking approaches can be used in our context. (ii) Statistical
model checking is not exhaustive (within a finite time horizon),
whereas we are. (iii) Both probabilistic and statistical model
checking use a stochastic model for the System Under Verifi-
cation (SUV), whereas in our setting the SUV is deterministic
and disturbances are nondeterministic. The probability measure
in our context, as in random model checking, stems from
the randomisation of the verification process itself. (iv) None
of the available simulation-based statistical model checking
approaches addresses the problem of the optimisation of the
simulation campaign, which is an essential step to make
our parallel random exhaustive HILS based model checking
viable.

Formal verification of Simulink models has been widely
investigated, examples are in [24]–[26]. Such methods however
focus on discrete time models (e.g., Stateflow or Simulink re-
stricted to discrete time operators) with small domain variables.
Therefore they are well suited to analyse critical subsystems,
but cannot handle complex system level verification tasks (e.g.,
as our case study). This is indeed the motivation for the
development of statistical model checking methods as those
in [8], [22], for the exhaustive HILS based approach in [1],
and for our present parallel random exhaustive HILS based
approach.

VII. CONCLUSIONS

We presented a parallel random exhaustive Hardware In
the Loop Simulation (HILS) based model checker for hybrid
systems that, while being exhaustive, provides at any time
during the verification process an upper bound to the prob-
ability that the System Under Verification (SUV) exhibits an
error in a yet-to-be-simulated scenario (Omission Probability,
OP). Our experimental results on the Fuel Control System
(FCS) case study in the Simulink distribution show that,
by exploiting parallelism, our simulation campaign optimiser
effectively counteracts the simulation time overhead stemming
from randomisation. Finally, we showed that our bound to
the OP decreases linearly with the coverage, and thus is as
good as it can be even in the worst case scenario (just one
error trace). Furthermore, resting on randomisation, we can
use the coverage as a reliable estimator for the time needed to
complete the verification process.
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