
Control Software Visualization

Federico Mari, Igor Melatti, Ivano Salvo and Enrico Tronci
Department of Computer Science

Sapienza University of Rome
Via Salaria 113, 00198 Rome, Italy

Email: {mari,melatti,salvo,tronci}@di.uniroma1.it

Abstract—Many software as well digital hardware automatic
synthesis methods define the set of implementations meeting
the given system specifications with a boolean relationK
(controller). Such relation, given a system states and an action
u, returns 1 iff taking action u in state s leads in the system
goal or at least one step closer to it. In order to determine at
hand if K is a “good” controller, e.g., if it covers a wide enough
portion of the system state space, or to provide an high level
view of the actions enabled byK, it is useful to picture K in
a 2D or 3D diagram. In this paper, starting from a canonical
representation forK, we propose an algorithm to automatically
generate such a picture, relying on available graphing tools.

Keywords-Control Software Visualization; Embedded Systems;
Model Checking

I. I NTRODUCTION

Many Embedded Systemsare indeedSoftware Based
Control Systems(SBCSs). An SBCS consists of two main
subsystems: thecontroller and theplant. Typically, the plant
is a physical system consisting, for example, of mechanical
or electrical devices whereas the controller consists ofcon-
trol software running on a microcontroller. In an endless
loop, the controller readssensoroutputs from the plant and
sends commands to plantactuators in order to guarantee
that theclosed loop system(that is, the system consisting
of both plant and controller) meets givensafetyand liveness
specifications (System Level Formal Specifications).

Software generation from models and formal specifica-
tions forms the core ofModel Based Designof embedded
software [1]. This approach is particularly interesting for
SBCSs since in such a case system level (formal) specifi-
cations are much easier to define than the control software
behavior itself.

The typical control loop skeleton for an SBCS is the
following. Measurex of the system state from plantsensors
goes through ananalog-to-digital(AD) conversion, yielding
a quantizedvalue x̂. A function ctrlRegion checks if x̂
belongs to the region in which the control software works
correctly. If this is not the case, aFault Detection, Isolation
and Recovery(FDIR) procedure is triggered; otherwise a
function ctrlLaw computes a command̂u to be sent to
plant actuators after a digital-to-analog (DA) conversion.
Basically, the control software design problem for SBCSs
consists in designing software implementing functionsctr-
lLaw andctrlRegion.

Figure 1. Control Software Synthesis Flow.

Automatic methods and tools aiming at synthesizing both
functions ctrlLaw and ctrlRegion above have been devel-
oped in the last years, e.g., in [2][3][4][5][6][7]. In this
paper, we will refer to the method described in [7], but
the approach we describe may be applied to the other ones
as well. Figure 1 shows the model based control software
synthesis flow in [7]. A specification consists of a plant
model, given as a Discrete Time Linear Hybrid System
(DTLHS), System Level Formal Specifications that describe
functional requirements of the closed loop system, and
Implementation Specifications that describe non functional
requirements of the control software, such as the number
of bits used in the quantization process, the required worst
case execution time, etc. Given such an input, in step 1 a
suitable finite discrete abstraction (control abstraction[7])
Ĥ of the DTLHS plant modelH is computed;Ĥ depends
on the quantization schema and it is the plant as it can
be seen from the control software after AD conversion.
Then (step 2), given an abstraction̂G of the goal states
G, it is computed a controllerK that starting from any
initial abstract state, driveŝH to Ĝ regardless of possible
nondeterminism. Control abstraction properties ensure that
K is indeed a (quantized representation of a) controller for
the original plantH. Finally (step 3), the finite automaton
K is translated into control software (C code).

In the following, we represent the control software with
a boolean relationK (controller) taking as input (then-bits

encoding of) astatex of the plant and (ther-bits encoding
of) a proposedaction to be performedu, and returnstrue
(i.e., 1) iff the system specifications are met when perform-
ing actionu in statex. In this approach,K is synthesized so
that a given (initial) plant states regionI (which is given as
part of the system level formal specifications) is guaranteed
to be covered byK. That is, for all statesx ∈ I, there must
exist at least an actionu s.t. K(x, u) holds. Typically,I is
set to be small in order to increase the likelihood that aK

fulfilling the above given property exists. However, the set
of states covered byK, i.e.,dom(K) = {x | ∃u : K(x, u)}
may result to be much bigger thanI. Therefore, once a
K is built, it is useful to have a tool to graphically depict
dom(K), in order to be able to visualize how big the region
dom(K) is, as well as to have a glimpse of which actions
are turned on byK on given plant states regions.

A. Our Main Contributions

In this paper we present an algorithm that, from an OBDD
(Ordered Binary Decision Diagram[14]) representation of
a controllerK for a DTLHS modeling an SBCS, effectively
generates a 2D picture (namely, an input file for Gnuplot [8])
depicting K. Such picture consists on a cartesian plane
where each point corresponds to a state of the starting
DTLHS, and shows as painted with the same color all
regions of states for which the sameactions setis defined
onK. The color for a state(x, y) depends on which actions
set is enabled byK in the DTLHS state(x, y), i.e., it is
uniquely determined byc(x, y) = {u | K((x, y), u)}. As a
special case, ifc(x, y) = ∅ for some(x, y), i.e.,(x, y) is not
controlled byK, then the color is white. A separated picture
showing the relation between a color and the corresponding
actions set is also automatically generated. In this way,
the state region for which any color is shown depicts the
coverage ofK, whilest the regions colors give a glimpse of
which actions are turned on byK.

In our setting, since we seekK for which a software
implementation is possible, a finite number of bits is used to
encode both the states and the actions of the starting DTLHS.
Suppose now that|u| = r, i.e., if r bits are needed in order
to encode an action of the given DTLHS. Then, there may
be at most22

r

different actions sets, i.e.,|{c(x, y) | (x, y) is
a state}| = 22

r

. That is, withr = 5 we need4×109 colors,
which is more than a typical RGB with 8 bits per color may
achieve. Thus, our method may work only up tor = 4. Note
however that this is not a limitation, since typical DTLHSs
do not need more than 3 bits per action. Moreover, for most
systems|{c(x, y) | (x, y) is a state}| << 22

r

, thus we may
generate the picture even ifr ≥ 5.

We present experimental results showing effectiveness of
the proposed algorithm. As an example, in about 1 hour we
are able to generate the pairs of pictures described above for
a multi-input buck DC/DC converter [9] withr = 4 action
bit variables.

B. Paper outline

This paper is organized as follows. Section III provides
the background needed to understand the results of this
paper. Section IV describes our method to generate a picture
visualizing a controller. Section V provides experimental
results. Finally, Section VI summarizes and concludes the
paper.

II. RELATED WORK

Many papers (e.g., see [7][11][12][13]) tackling the prob-
lem of synthesizing control software (which looks to quan-
tized states) or control laws (which looks at real states) of
hybrid systems show pictures of the type we generate in
this paper (withr = 1, i.e., only one bit for the actions).
However, to the best of our knowledge there are no papers
directly focusing on the method to generate such pictures,
thus no automatic approach to controllers visualization is
described.

Therefore, to the best of our knowledge this is the first
time that an algorithm generating a picture of the coverage
of a controller for a DTLHS is presented.

III. B ASIC DEFINITIONS

To make this paper self-contained, in this section we
briefly summarize previous work on automatic generation
of control software forDiscrete Time Linear Hybrid System
(DTLHS) from System Level Formal Specifications focusing
on basic definitions and mathematical tools that will be
useful in the sequel.

Figure 1 shows the control software synthesis flow that
we consider here [7]. We model the controlled system (i.e.,
the plant) as a DTLHS (Section III-D), that is a discrete
time hybrid system whose dynamics is modeled as alinear
predicate(Section III-A) over a set of continuous as well as
discrete variables. The semantics of a DTLHS is given in
terms of aLabeled Transition Systems(LTS, Section III-C).

Given a plantH modeled as a DTLHS, a set ofgoal
statesG (liveness specifications) and an initial region I,
both represented as linear predicates, we are interested in
finding a restriction K of the behaviourof H such that in
the closed loop systemall paths starting in a state inI lead
to G after a finite number of steps. FindingK is the DTLHS
control problem(Section III-D) that is in turn defined as a
suitable LTS control problem (Section III-C).

Finally, we are interested in controllers that take their
decisions by looking atquantized states, i.e., the values that
the control software reads after an AD conversion. This is
the quantized control problem.

A. Predicates

We denote withX = [x1, . . . , xn] a finite sequence of
variables. Each variablex ranges on a known (bounded or
unbounded) intervalDx either of the reals or of the integers
(discrete variables). We denote withDX the set

∏
x∈X Dx.

Boolean variables are discrete variables ranging on the setB

= {0, 1}. Unless otherwise stated, we suppose real variables
to range onR and integer variables to range onZ.

A linear expressionover a list of variablesX is a linear
combination of variables inX with rational coefficients.
A linear constraintover X (or simply a constraint) is an
expression of the formL(X) ≤ b, whereL(X) is a linear
expression overX and b is a rational constant. Finally, a
conjunctive predicateis conjunction of constraints.

B. OBDD Representation for Boolean Functions

We will denote boolean functionsf : B
n → B with

boolean expressions on boolean variables involving+ (log-
ical OR), · (logical AND, usually omitted thusxy = x · y),
¯ (logical complementation) and⊕ (logical XOR). We will
also denote vectors of boolean variables in boldface, e.g.,
x = 〈x1, . . . , xn〉. Moreover, we also denote withf |xi=g(x)
the boolean functionf(x1, . . . , xi−1, g(x), xi+1, . . . , xn)
and with ∃xi f(x) the boolean functionf |xi=0(x) +
f |xi=1(x). A truth assignmentµ is a partial map from
a set of boolean variablesV to B. A minterm of µ is
a total extension ofµ, i.e., a total truth assignmentν
s.t. µ(x) 6=⊥→ ν(x) = µ(x) for all x ∈ V. The
value of a minterm (or of a total truth assignment)ν is∑n

i=1 2
i−1ν(xi), beingV = {x1, . . . , xn}.

An OBDD with complemented edges
(COBDD [14][15][16]) is a rooted directed acyclic
graph (DAG) with the following properties. Each nodev is
labeled either with a boolean variablevar(v) (an internal
node) or with1 ∈ B (the unique terminal node1). Each
internal nodev has exactly two children, labeled with
high(v) (representing the case in whichvar(v) is true)
and low(v) (var(v) is false). Moreover,low(v) may be
complemented, depending on a labelflip(v) being true.
Finally, on each path from the root to a terminal node, the
variables labeling each internal node must follow the same
ordering. The semantics of a COBDD internal nodev w.r.t.
a flipping bit b, with var(v) = x, is the boolean function

Jv, bK := xJhigh(v), bK + x̄Jlow(v), b⊕ flip(v)K

C. Most General Optimal Controllers

A Labeled Transition System(LTS) is a tuple S =
(S,A, T) whereS is a finite set of states,A is a finite set of
actions, andT is the (possibly non-deterministic)transition
relation of S. A controller for an LTS S is a function
K : S×A→ B enabling actions in a given state. We denote
with Dom(K) the set of states for which a control action
is enabled. An LTScontrol problem is a triple P = (S,
I, G), whereS is an LTS andI,G ⊆ S. A controller K
for S is a strong solutionto P iff it drives eachinitial state
s ∈ I in a goal statet ∈ G, notwithstanding nondeterminism
of S. A strong solutionK∗ to P is optimal iff it minimizes
path lengths. An optimal strong solutionK∗ toP is themost
general optimal controller(we call such solution anmgo) iff
in each state it enables all actions enabled by other optimal

controllers. For more formal definitions of such concepts,
see [7]. For efficient algorithms to compute mgos starting
from suitable (nondeterministic) LTSs, i.e., see [17].

D. Discrete Time Linear Hybrid Systems

In this section we introduce the class of discrete time Hy-
brid Systems that we use as plant models, namelyDiscrete
Time Linear Hybrid Systems(DTLHSs for short). For a more
complete introduction, see [10].
Definition 1. A Discrete Time Linear Hybrid Systemis a
tupleH = (X, U, Y, N) where:X is a finite sequence of
present statevariables (we denote withX ′ the sequence
of next statevariables obtained by decorating with′ all
variables inX); U is a finite sequence ofinput variables;Y
is a finite sequence ofauxiliary variables;N(X,U, Y,X ′)
is a conjunctive predicate overX ∪ U ∪ Y ∪ X ′ defining
the transition relation (next state) of the system. Note
that X,U, Y may contain discrete as well as continuous
variables.

DTLHSs may be used to represent many interesting real-
world plants, such as e.g., the buck DC/DC converter with
multi inputs used in Section V [9].

Given a DTLHSH = (X, U , Y , N), we define LTS(H)
= (DX , DU , Ñ) where: Ñ : DX × DU × DX → B is
a function s.t.Ñ(x, u, x′) ≡ ∃ y ∈ DY N(x, u, y, x′). A
statex for H is a statex for LTS(H). A DTLHS control
problem P = (H, I, G) is defined as the LTS control
problem (LTS(H), I, G). To accommodate quantization
errors, always present in software based controllers, it is
useful to relax the notion of control solution by tolerating
an (arbitrarily small) errorε on the continuous variables.
Accordingly, we look for controllers that drive the plant to
the goalG with an error at mostε (we call such a controller
a ε-solution to P). Such an error is defined by the given
quantizationfor the DTLHS.

In classical control theory the concept ofquantizationhas
been introduced (e.g., see [18]) in order to manage real val-
ued variables. Quantization is the process of approximating
a continuous interval by a set of integer values. Formally, a
quantization functionγ for a real intervalI = [a, b] is a non-
decreasing functionγ : I 7→ Z s.t.γ(I) is a bounded integer
interval. Finally, aquantizationQ = (A,Γ) for a DTLHS
encloses quantization functionsΓ for all state variables as
well as the bounded (safe)admissible regionA on which the
desired controller is supposed to work. Namely,A bounds
both state variables (subregionAX) on which the controller
has to keep the system and action variables (subregionAU)
on which the controller works.

A control problem admits aquantizedsolution if control
decisions can be made by just looking at quantized values.
This enables a software implementation for a controller.

Definition 2. Given a quantizationQ, aQ Quantized Feed-
back Control(QFC) solution to a DTLHS control problem
P is a ‖Γ‖ solution K(x, u) to P such thatK(x, u) =

K̂(Γ(x),Γ(u)), whereK̂ : Γ(AX)× Γ(AU) → B and‖Γ‖
is the size of the largest interval of values that are mapped
to the same quantized value.

For efficient (non-complete) algorithms to compute QFC
solutions to a DTLHS control problem, e.g., see [7].

IV. A UTOMATIC V ISUALIZATION OF CONTROL

SOFTWARE

In this section, we describe (Algorithms 1 and 2) our
method to automatically generate a 2D picture describing
a Q QFC solutionK to a DTLHS control problemP =
(H, I, G) with a given quantizationQ = (A,Γ).

The picture we generate lies on a 2D cartesian plane,
where each axis is labeled with a state variable ofH and
has a range bounded byA. Then, a point(x, y) in the picture
is colored depending on which actions set is enabled byK

in the DTLHS state(x, y), i.e., on

c(x, y) = {u | K((x, y), u) = 1}

If H hasℓ+2 state variables, then the actions set we consider
is c(x, y) = {u | ∃d1, . . . , dℓK((x, y, d1, . . . , dℓ), u) = 1}.
Note that such a picture is practically useful ifH has
at least two real variables, which is indeed the case in
most real-world SBCSs. Finally, a second picture showing
the correspondence between actions sets and colors is also
generated.

A. Input and Output

The above is performed by our main functionVisualize
(described in Algorithm 1), which takes as input:

• a DTLHS plant modelH = (X, U, Y, N);
• a quantizationQ = (A,Γ) for H;
• a subsetΞ ⊆ X of plant state variables s.t.|Ξ| = 2;

variables inΞ are those to be shown in the axes of the
final 2D picture;

• a Q QFC solutionK to a control problem involving
H. By Definition 2, K is based on a controller̂K
that only looks at integer (quantized) values. Thus, by
considering the boolean encoding of such values (as it
is usual in Model Checking Applications),̂K, and by
abuse of notationK, can be represented as a COBDD
ρ, a nodev of ρ and a flipping bitb s.t. Jv, bK = K.

The output of Visualize is a Gnuplot [8] source files
pair (P,C) describing the pictureP to be generated and
the color legendC. Note however thatVisualize may
be easily adjusted to work with any other graphing tool,
provided that it generates pictures from textual descriptions.
In Algorithm 1, we representP as a list of rectangles in
the plant state space (restricted to variables inΞ). To each
rectangle, we associate the RGB code of the corresponding
color to be displayed. Analogously,C is a list of colored
rectangles with height equal to the height of the picture:
on thex axis the actions set corresponding to each colored
rectangle is shown.

B. Algorithm Details

FunctionVisualizeworks as follows. First of all, in line 2,
state bit variables encoding plant state variables not inΞ
(i.e., thosenot to be displayed in the final picture) are
existentialized out fromK, thus obtaining COBDD nodev′

and flipping bit b′ such thatJv′, b′K = ∃v1, . . . , vℓJv, bK =
∃v1, . . . , vℓK = K̃. As a result, the final picture will show
all values for plant state variables inΞ s.t. there exists at
least a value for all plant state variables inX \ Ξ that is
controlled byK.

The workflow of the remaining lines is as follows. In
order to obtain a better compression, controllers are typically
represented with COBDDs where action bit variables come
first in the variables ordering; this is also the case for [7].
In order to generate the desired picture, we reverse such
order by placing state bit variables before action bit variables
(line 4), thus obtaining a new COBDDρ′. Since there always
exists a COBDD representing a given boolean formula, in
the new COBDDρ′ there will be a nodev′′ s.t.Jv′′, b′K = K̃.
This allows us to perform a depth-first visit (DFS) of the
COBDD representingK̃, by calling (line 5) functionCre-
ateGnuplotBodydescribed in Algorithm 2. Namely, function
CreateGnuplotBodyreturns a listM of (µ, v, b) triples s.t.
µ is a total truth assignment to state bit variables with value
x̂, and for all plant statesx in the quantized statêx (i.e.,
such thatx ∈ Γ−1(x̂)) K enables the set of actionsu s.t.
the boolean encoding ofu satisfiesJv, bK.

In order to achieve this goal, functionCreateGnuplotBody
of Algorithm 2 starts a depth-first visit (DFS) ofρ′ from
node v′′ with flipping bit b′. On each path fromv′′ to 1,
the DFS stops as soon as an action bit variable is found
at nodez (i.e., var(z) is part of plant action variablesU
encoding) with flipping bitc. While exploring such a path,
the corresponding truth assignmentµ is maintained, i.e.,
if the then edge of a nodew has been traversed, then
µ(var(w)) = 1 (lines 5–6); if the else edge has been
traversed, thenµ(var(w)) = 0 (lines 7–9). Moreover, if
a complemented edge is traversed, the flipping bitb is
flipped (line 8). Once, in line 1, a nodez is found s.t.
var(z) is an action bit variable, or directly1 is encountered
(meaning that all actions are enabled byK for the quantized
states corresponding to values of minterms ofµ), the to-be-
returned listM is updated (lines 2–3) by adding all minterms
of the currentµ together with the pair(z, b).

Once functionCreateGnuplotBodyhas finished, the re-
turned listM may be directly translated in a Gnuplot fileP
as follows. For each triple(µ, v, b) in M , the valuex̂ of µ is
translated in a rectangle having as bounds those ofΓ−1(x̂),
i.e., of the cartesian product of the intervals that are mapped
to x̂ (line 10). The RGB color of such a rectangle may be
determined starting from the address (a C language pointer)
of (v, b). However, this has the following drawbacks: i) the
Gnuplot file for the picture may be too big; ii) different runs

of function Visualize (e.g., with different quantizations, and
thus different boolean encoding, for plant state variables)
may result in different colors for equal actions sets, which
may make difficult an effective comparison between differ-
ent experiments. In order to counteract i),M is compacted,
by collapsing contiguous quantized states with the same
action sets (functionCompactRectangularRegionsin line 7
of Algorithm 1). To avoid ii), we first generate all possible
22

r

colors (line 8, using an approach similar to [19]) and
we use a lexicographical ordering on action sets to pick one
of such colors. Finally, the Gnuplot fileC maintaining the
correspondence between colors and action sets is generated
in lines 11–12, where SatAll returns all satisfying minterms
of the given COBDD (boolean function).

Algorithm 1 Visualizing a controller.
Require: DTLHS H, quantizationQ, state variables setΞ

s.t. |Ξ| = 2, COBDD ρ, nodev, booleanb
Ensure: Visualize(H,Ξ, ρ, v, b):

1: let v1, . . . , vℓ be the state bit variables encoding plant
variables inΞ

2: let v′, b′ be s.t.Jv′, b′K = ∃v1, . . . , vℓJv, bK
3: let w1, . . . , wr, wr+1, . . . , wn+r be the current bit vari-

ables ordering inρ, being r (resp.n) the number of
action (state) bits variables

4: modify the ordering inwr+1, . . . , wn+r, w1, . . . , wr;
call ρ′ the resulting COBDD andv′′ the node ofρ′ s.t.
Jv′′, b′Kρ′ = Jv′, b′Kρ

5: M ←CreateGnuplotBody(ρ′, v′′, b′, w1,⊥,∅)
6: for all i ∈ [|α|] do
7: M ←CompactRectangularRegions(M, i)
8: χ←DifferentColorsRGB(22

r

)
9: for all triples (µ, v, b) ∈M do

10: usingQ, append toP the rectangle corresponding to
µ with color χlexOrder(v,b)

11: for all (v, b) s.t. ∃(µ, v, b) ∈M do
12: append toC a rectangle of colorχlexOrder(v,b) with

label SatAll(ρ′, v, b)
13: return 〈P,C〉

V. EXPERIMENTAL RESULTS

We implemented our picture generation algorithm in
C programming language, using the CUDD package for
OBDD based computations and BLIF files to represent input
OBDDs. We name the resulting tool KPS (Kontroller Picture
Synthesizer). KPS is part of a more general tool named
QKS (Quantized feedback Kontrol Synthesizer[7]). In this
section we present our experiments that aim at evaluating
effectiveness of KPS.

1) Experimental Settings:We present experimental re-
sults obtained by using KPS on given COBDDsρ1, . . . , ρ4
and DTLHSsH1, . . . ,H4 s.t. for all i ∈ [4] ρi represents
the mgo Ki(x,u) for a buck DC/DC converter withi
inputs (see [9] for a description of this system) modeled

Algorithm 2 Visualizing a controller: Gnuplot body.
Require: COBDD ρ, node v, booleanb, first action bit

variable a, truth assignmentµ, (assignment, COBDD
node, flipping bit) triples setM

Ensure: CreateGnuplotBody(ρ, v, b, a, µ,M):
1: if (v = 1 ∧ ¬b) ∨ (v 6= 1 ∧ var(v) > a) then
2: for all mintermsν of µ do
3: M ←M ∪ (ν, v, b)
4: else if v 6= 1 then
5: µ(var(v))← 1
6: M ←CreateGnuplotBody(ρ, high(v), b, a, µ,M)
7: µ(var(v))← 0
8: if flip(v) then b← ¬b
9: M ←CreateGnuplotBody(ρ, low(v), b, a, µ,M)

10: return M

Table I
KPS PERFORMANCE(CPU TIMES ARE IN SECONDS).

r CPU(P) CPU(G) |P | |J | |E|

1 9.15e+00 3.25e+02 6.17e+03 2.46e+01 5.19e+03
2 1.00e+01 1.47e+03 1.29e+04 2.91e+01 1.09e+04
3 1.06e+01 2.43e+03 1.67e+04 2.91e+01 1.39e+04
4 1.10e+01 3.58e+03 2.02e+04 3.16e+01 1.68e+04

by Hi, where quantizationQ is s.t. n = |x| = 20 and
ri = |u| = i. Ki is an intermediate output of the QKS
tool described in [7]. For eachρi, we run KPS so as to
computeVisualize(Hi, Q, X, ρi, vi, bi) (see Algorithm 1).
All our experiments have been carried out on a 3.0 GHz Intel
hyperthreaded Quad Core Linux PC with 8 GB of RAM.

2) KPS Performance:In this section we will show the
performance (in terms of computation time and output size)
of the algorithms discussed in Section IV. Table I show our
experimental results. Thei-th row in Table I corresponds to
experiments running KPS so as to computeSynthesize(Hi,

Q, X, ρi, vi, bi). Columns in Table I have the following
meaning. Columnr shows the number of action variables
|u| (note that |x| = 20 on all our experiments). Col-
umn CPU(P) shows the computation time of KPS, i.e., of
function Visualize of Algorithm 1 (in seconds). Columns
|P |, |J | and |E| show the size in KB of, respectively, the
source Gnuplot file for the 2D picture (i.e., the outputP of
function Visualize of Algorithm 1), the JPEG file generated
by Gnuplot fromP (i.e., with compression), and the EPS file
generated by Gnuplot fromP (i.e., without compression).
Finally, Column CPU(G) shows the computation time of
Gnuplot (in seconds) to generate the JPEG and the EPS
files (computation time and size for fileC are negligible).

From Table I we can see that, in slightly more than 10
seconds we are able to generate the Gnuplot file for the
multi-input buck withr = 4 action variables. Then, Gnuplot
needs about one hour to synthesize the actual picture (either
in JPEG or in EPS).

-1

 0

 1

 2

 3

 4

 5

 6

 7

-4 -3 -2 -1 0 1 2 3 4

v O

iL

Figure 2. KPS+Gnuplot generated picture (P) for K2.

 0

 0.2

 0.4

 0.6

 0.8

 1

(-,-) (-,1) (0,-),(1,1) (1,0) (-,0) (0,0) (0,1),(1,-)
u1, u2

Figure 3. KPS+Gnuplot generated picture (C) for K2.

3) KPS Evaluation: In Figures 2 and 3 we show the
pictures generated by the KPS–Gnuplot chain forK2. First
of all, from Figure 3 we note that only7 actions sets out of
22

2

= 16 are indeed enabled inK. Moreover, from Figure 2
we may immediately see thatK indeed covers nearly all the
admissible region of the buck converter. Finally, combining
the two figures, we may see that the actions set{(−, 1)}
(i.e., u2 = 1 andu1 may be either1 or 0) is the most used
one.

VI. CONCLUSIONS

In this paper, we addressed the problem of visualizing a
controllerK for a DTLHS modeling an embedded system
(plant). To this aim, we presented an algorithm and a tool
KPS implementing it, which, from an OBDD representation
of K, effectively generates a 2D picture depictingK. Such
picture consists on a cartesian plane where each point
corresponds to a state of the starting DTLHS, and colors
with the same color all regions of states for which the same
actions set is defined onK. A separated picture showing the
relation between a color and the corresponding actions set
is also automatically generated. In this way, the state region
for which any color is shown depicts the coverage ofK,
whilest the regions colors give a glimpse of which actions
are turned on byK on given plant states regions. We have
shown feasibility of our proposed approach by presenting
experimental results on using it to visualize the controller
for a multi-input buck DC-DC converter.

The proposed approach currently generates a 2D picture,
which forces to focus on just two plant state variables. Thus,
a natural possible future research direction is to investigate
how to generate a 3D picture. Finally, a 3D bar picture may
also be used if there are more than 2 state variables in the
input DTLHS plant, in order to show for each quantized
value of the variables to be shown (i.e., those inΞ) the
percentage of coverage w.r.t. variables not to be shown (i.e.,
not in Ξ).

Acknowledgments:We are grateful to our anonymous
referees for their helpful comments. Our work has been
partially supported by: MIUR project DM24283 (TRAMP)
and by the EC FP7 project GA218815 (ULISSE).

REFERENCES

[1] T. A. Henzinger and J. Sifakis, “The embedded systems
design challenge,” inFM’06, LNCS 4085.

[2] T. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model
checker for hybrid systems,”STTT, 1(1), pp. 110–122, 1997.

[3] G. Frehse, “Phaver: algorithmic verification of hybrid systems
past hytech,”STTT, 10(3), pp. 263–279, 2008.

[4] H. Wong-Toi, “The synthesis of controllers for linear hybrid
automata,” inCDC’97, pp. 4607–4612.

[5] C. Tomlin, J. Lygeros, and S. Sastry, “Computing controllers
for nonlinear hybrid systems,” inHSCC’99, LNCS 1569.

[6] M. Mazo, A. Davitian, and P. Tabuada, “Pessoa: A tool for
embedded controller synthesis,” inCAV’10, LNCS 6174.

[7] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV’10, LNCS 6174.

[8] “Gnuplot: http://www.gnuplot.info/,” accessed: Jul 31, 2012.
[9] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “On model based

synthesis of embedded control software,” inEMSOFT’12.
[10] F. Mari, I. Melatti, I. Salvo, E. Tronci. Quantized feedback

control software synthesis from system level formal specifi-
cations.CoRR, abs/1107.5638v1, 2011.

[11] A. Girard, “Synthesis using approximately bisimilar abstrac-
tions: time-optimal control problems,” inCDC’10.

[12] M. J. Mazo and P. Tabuada, “Symbolic approximate time-
optimal control,”Systems & Control Letters, 60(4), pp. 256–
263, 2011.

[13] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar
symbolic models for incrementally stable switched systems,”
IEEE Trans. on Aut. Contr., 55(1), pp. 116–126, 2010.

[14] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
implementation of a bdd package,” inDAC’90.

[15] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision
diagram with attributed edges for efficient boolean function
manipulation,” inDAC’90, pp. 52–57.

[16] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “From boolean
relations to control software,” inICSEA’11.

[17] A. Cimatti, M. Roveri, and P. Traverso, “Strong planning in
non-deterministic domains via model checking,” inAIPS’98.

[18] M. Fu and L. Xie, “The sector bound approach to quantized
feedback control,”IEEE Trans. on Automatic Control, 50(11),
pp. 1698–1711, 2005.

[19] “How to generate random colors programmatically:
http://martin.ankerl.com/2009/12/09/how-to-create-random-
colors-programmatically/,” accessed: Jul 31, 2012.

[20] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV’10, LNCS 6174.

