
Linear Constraints and Guarded Predicates as a Modeling Language for Discrete

Time Hybrid Systems

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci

Department of Computer Science – Sapienza University of Rome

Via Salaria 113, 00198 Rome, Italy

Email: {mari,melatti,salvo,tronci}@di.uniroma1.it

Abstract—Model based design is particularly appealing in
software based control systems (e.g., embedded software) design,
since in such a case system level specifications are much
easier to define than the control software behavior itself.
In turn, model based design of embedded systems requires
modeling both continuous subsystems (typically, the plant) as
well as discrete subsystems (the controller). This is typically
done using hybrid systems. Mixed Integer Linear Programming
(MILP) based abstraction techniques have been successfully
applied to automatically synthesize correct-by-construction
control software for discrete time linear hybrid systems, where
plant dynamics is modeled as a linear predicate over state,
input, and next state variables. Unfortunately, MILP solvers
require such linear predicates to be conjunctions of linear
constraints, which is not a natural way of modeling hybrid
systems. In this paper we show that, under the hypothesis
that each variable ranges over a bounded interval, any linear
predicate built upon conjunction and disjunction of linear
constraints can be automatically translated into an equivalent
conjunctive predicate. Since variable bounds play a key role
in this translation, our algorithm includes a procedure to
compute all implicit variable bounds of the given linear
predicate. Furthermore, we show that a particular form of
linear predicates, namely guarded predicates, are a natural
and powerful language to succinctly model discrete time linear
hybrid systems dynamics. Finally, we experimentally show the
feasibility of our approach on an important and challenging
case study taken from the literature, namely the multi-input
Buck DC-DC Converter. As an example, the guarded predicate
that models (with 57 constraints) a 6-inputs Buck DC-DC
Converter is translated in a conjunctive predicate (with 102
linear constraints) in about 40 minutes.

Keywords-Model-based software design; Linear predicates;
Hybrid systems

I. INTRODUCTION

Many embedded systems are

Software Based Control Systems (SBCS). An SBCS

consists of two main subsystems: the controller and

the plant. Typically, the plant is a physical system

consisting, for example, of mechanical or electrical

devices, while the controller consists of control software

running on a microcontroller. In an endless loop, each

T seconds (sampling time), the controller, after an

Analog-to-Digital (AD) conversion (quantization), reads

sensor outputs from the plant and, possibly after a

Digital-to-Analog (DA) conversion, sends commands to

plant actuators. The controller selects commands in order

to guarantee that the closed loop system (that is, the system

consisting of both plant and controller) meets given safety

and liveness specifications (system level specifications).

This paper is an extension of the ICSEA 2012 pa-

per [1], and contributes to model based design of embed-

ded software [2]. Software generation from models and

formal specifications forms the core of model based de-

sign of embedded software. This approach is particularly

interesting for SBCSs, since in such a case system level

specifications are much easier to define than the con-

trol software behavior itself. In this setting, correct-by-

construction software generation from (as well as formal

verification of) system level specifications for SBCSs re-

quires modeling both the continuous subsystem (the plant)

and discrete systems (the controller). This is typically done

using hybrid systems (e.g., see [3][4]). Here we focus

on Discrete Time Linear Hybrid Systems (DTLHS) [5][6]

which provide an expressive model for closed loop systems.

A DTLHS is a discrete time hybrid system whose dynamics

is defined as a linear predicate (i.e., a boolean combination

of linear constraints) on its continuous as well as discrete

(modes) variables. A large class of hybrid systems, including

mixed-mode analog circuits, can be modeled using DTLHSs.

System level safety as well as liveness specifications are

modeled as set of states defined, in turn, as linear predicates.

Moreover, discrete time non-linear hybrid systems may be

properly overapproximated with DTLHSs [7] in such a

way that a controller for the overapproximated system is

guaranteed to work also for the original non-linear system.

In our previous work [8][9], stemming from a constructive

sufficient condition for the existence of a quantized sampling

controller for an SBCS modelled as a DTLHS (which is

an undecidable problem [10]), we presented an algorithm

that, given a DTLHS model H for the plant, a quantization

schema (i.e., how many bits we use for AD conversion)

and system level specifications, returns the C code [11] of a

correct-by-construction quantized feedback control software

(if any) meeting the given system level specifications. The

synthesis algorithm rests on the fact that, because of the

quantization process, the plant P is seen by the controller as

a Nondeterministic Finite State Automaton (NFSA) P̂ , that

is an abstraction of P . The NFSA P̂ is computed by

solving Mixed Integer Linear Programming (MILP) prob-

lems which contains the definition of the DTLHS dynam-

ics as a sub-problem. Since available MILP solvers (e.g.,

GLPK [12] and CPLEX [13]) require conjunctive predicates

(i.e., a conjunction of linear constraints) as input, we have

that the DTLHS dynamics must be given as a conjunctive

predicate.

While this is not a limitation for DTLHSs with a not

too complex dynamics, this may turn in an obstruction

for more complex systems. As an example, the dynamics

of the 6-inputs Buck DC-DC Converter of Section VII-A

is described by the conjunction of 102 linear constraints.

However, by allowing disjunction, the same dynamics may

be written as a linear predicate consisting of 45 linear

constraints. Moreover, constants occurring in such a linear

constraint are directly linked to the system physical (known)

parameters, while the ones in the conjunctive predicate must

be suitably computed. This results in a practical limitation

for the effective application of the method in [8][9].

This paper is motivated by circumventing such a limita-

tion, by showing that, under the hypothesis that each variable

ranges over a bounded interval, any linear predicate can

be automatically translated into an equivalent conjunctive

predicate.

Note that it is a reasonable hypothesis to assume variables

describing a DTLHS behavior to be bounded. In fact, control

software drives the plant towards a goal, while keeping it

inside a given desired bounded admissible region. Namely,

bounds on present state variables essentially model the

sensing region, that is the range of values observable by

the sensors. Such a region is usually a bounded rectangular

region (i.e., the Cartesian product of bounded intervals).

Bounds on controllable input variables model the actuation

region, that is the range of values of commands that the

actuators may send to the plant and it is also typically a

bounded rectangular region. Other variables may model both

non-observable plant state variables and uncontrollable in-

puts (i.e., disturbances). Therefore, bounds on such variables

are usually derived from reasonable assumptions or DTLHS

knowledge. On the other hand, next state variable bounds are

typically not explicitly given. However, they may be derived

from all other above mentioned variable bounds (as it will

be shown in Example 4 of Section V).

Finally, note that the application of the methods outlined

here is not limited to the scenario shown above, but may be

applied to nearly all possible usages of MILP solvers in any

field.

A. Our Main Contributions

In this paper, we give an algorithm to translate any linear

predicate into an equivalent (as for solving MILP problems,

as it will be shown in Proposition 1 of Section II-B) con-

junctive predicate, i.e., a conjunction of linear constraints.

This allows us to circumvent the limitation mentioned above,

i.e., that conjunctive predicates must be used to describe

DTLHSs dynamics.

We consider predicates built upon conjunctions and dis-

junctions of linear constraints (i.e., inequalities of the shape
∑n

i=1 aixi ≤ b, Section II). In order to translate them into

a conjunctive predicate, we employ a two-stage approach.

First, we show that, at the price of introducing fresh boolean

variables, a predicate can be translated into an equivalent

guarded predicate (Section IV-A), i.e., a conjunction of

guarded constraints of the shape y → (
∑n

i=1 aixi ≤ b).
Guarded predicates themselves are shown to be a power-

ful means of modeling DTLHSs dynamics in Section VI.

Second, once a guarded predicate has been obtained (or a

guarded predicate has been directly provided as the input

DTLHS model), we show that it can be in turn translated into

a conjunctive predicate (Section IV-B). This latter translation

needs, as a further input, the (finite) upper and lower bounds

for each variable in the predicate. To this end, in Section V

we give an algorithm that computes bounds for a variable x
in a given guarded predicate G(X), i.e., either it returns

two values mx,Mx ∈ R such that if G(X) holds, then

mx ≤ x ≤ Mx, or it concludes that such values do not

exist.

An experimental evaluation of the translation algorithm

presented in this paper is in Section VII. As an example, we

show that the linear predicate that models a 4-inputs Buck

DC-DC Converter with 39 linear constraints is translated

into a conjunctive predicate of 82 linear constraints in

slightly more than 3 hours.

Note that there are two available inputs for our translation

algorithm: i) a linear predicate or ii) a guarded predicate.

Namely, if a guarded predicate is provided as input, only

the second stage mentioned above is performed. Our ex-

perimental evaluation also shows that it is more convenient

to use guarded predicates instead of linear predicates when

modeling DTLHSs dynamics. As an example, the guarded

predicate that models a 6-inputs Buck DC-DC Converter

with 57 constraints (including 12 different guards), is trans-

lated into a conjunctive predicate of 102 linear constraints

in about 40 minutes.

B. Paper Outline

The paper is organized as follows. Section II provides the

basic definitions to understand our approach. In Section III,

we formally define DTLHSs. In Section IV, our two-steps

approach (from linear predicates to guarded predicates and

then to conjunctive predicates) is outlined, assuming vari-

ables bounds to be known. In Section V, we show how we

automatically compute bounds for all variables in a guarded

predicate, thus completing the description of our approach.

Section VI shows that guarded predicates are a powerful

and natural modeling language for DTLHSs. Section VII

shows experimental results on a meaningful case study,

namely the multi-input Buck DC-DC Converter. Finally,

Sections VIII and IX conclude the paper, by comparing

the approach presented here with previous work and by

providing concluding remarks and future work.

II. BASIC DEFINITIONS

An initial segment {1, . . . , n} of N is denoted by [n]. We

denote with X = [x1, . . . , xn] a finite sequence of distinct

variables, that we may regard, when convenient, as a set.

Each variable x ranges on a known (bounded or unbounded)

interval Dx either of the reals (continuous variables) or of the

integers (discrete variables). The set
∏

x∈X Dx is denoted

by DX . Boolean variables are discrete variables ranging on

the set B = {0, 1}. If x is a boolean variable we write x̄
for (1− x). The sequence of continuous (discrete, boolean)

variables in X is denoted by Xr (Xd, Xb).

The set of sequences of n boolean values is denoted

by B
n. The set B

n
k ⊆ B

n denotes sequences that contains

exactly k elements equal to 1. Given a, b ∈ B
n, we say that

a ≤ b if a is point-wise less or equal to b, i.e., if for all

i ∈ [n] we have that ai ≤ bi. Given a set B ⊆ B
n and

a ∈ B
n we write a ≤ B if there exists b ∈ B such that

a ≤ b and a ≥ B if there exists b ∈ B such that a ≥ b. We

denote with Ones(b) be the set of indexes such that bj = 1,

i.e., Ones(b) = {j ∈ [n] | bj = 1}.

A. Predicates

A linear expression L(X) =
∑n

i=1 aixi is a linear

combination of variables in X with rational coefficients. A

constraint is an expression of the form L(X) ≤ b, where b
is a rational constant. We write L(X) ≥ b for −L(X) ≤ −b,
L(X) = b for (L(X) ≤ b) ∧ (−L(X) ≤ −b), and

a ≤ L(X) ≤ b for (L(X) ≤ b) ∧ (L(X) ≥ a).
(Linear) predicates are inductively defined as follows. A

constraint C(X) is a predicate over X . If A(X) and B(X)
are predicates, then (A(X)∧B(X)) and (A(X)∨B(X)) are

predicates over X . Parentheses may be omitted, assuming

usual associativity and precedence rules of logical operators.

A conjunctive predicate is a conjunction of constraints.

A valuation over X is a function v that maps each variable

x ∈ X to a value v(x) in Dx. We denote with X∗ ∈ DX

the sequence of values v(x1), . . . , v(xn). We call valuation

also the sequence of values X∗. Given a valuation X∗, the

value for variable x is X∗(x). Given a predicate P (Y,X),
P (Y,X∗) denotes the predicate obtained by replacing each

occurrence of x with X∗(x). A satisfying assignment to a

predicate P (X) is a valuation X∗ such that P (X∗) holds.

A predicate is said to be satisfiable if there exists at least

one satisfying assignment. Abusing notation, we denote with

P also the set of satisfying assignments to the predicate

P . P (X) and Q(X) are equivalent, notation P ≡ Q, if

they have the same set of satisfying assignments. P (X) and

Q(Z) are equisatisfiable, notation P ≃ Q, if P is satisfiable

if and only if Q is satisfiable. Finally, two predicates P (X)

and Q(X,Z) are X-equivalent, notation P ≡X Q, if the

following holds for all valuations X∗, Z∗:

1) if P (X∗) holds, then Q(X∗, Z) is satisfiable;

2) if Q(X∗, Z∗) holds, then P (X∗) holds.

B. Mixed Integer Linear Programming

A Mixed Integer Linear Programming (MILP) problem

with decision variables X is a tuple (max, J(X), A(X))
where X is a list of variables, J(X) (objective function)

is a linear expression over X , and A(X) (constraints) is a

predicate over X . A solution to (max, J(X), A(X)) is a

valuation X∗ such that A(X∗) and ∀Z (A(Z)→ (J(Z)≤
J(X∗))). J(X∗) is the optimal value of the MILP problem.

A feasibility problem is a MILP problem of the form

(max, 0, A(X)). We write also A(X) for (max, 0, A(X)).
In algorithm outlines, MILP solver invocations are denoted

by function feasible(A(X)) that returns 1 if A(X) is satis-

fiable and 0 otherwise, and by function optimalValue(max,

J(X), A(X)) that returns either the optimal value of the

MILP problem (max, J(X), A(X)) or ∞ if such MILP

problem is unbounded. We write (min, J(X), A(X)) for

(max,−J(X), A(X)).

Note that available MILP solvers (e.g., GLPK [12] or

CPLEX [13]) require A(X) to be a conjunctive predicate.

However, as explained in Section I, MILP problems arising

in methods like [8][9] are more easily represented as linear

predicates. Thus, we need a translation algorithm from a

linear predicate A to a conjunctive predicate A′ such that a

solution to (max, J, A′) (which may be computed by a MILP

solver) is also a solution to (max, J, A) (which may not be

computed by a MILP solver). To this end, Proposition 1

clarifies that X-equivalence between predicates must be

sought.

Proposition 1: Let (max, J(X), A(X)) be a MILP prob-

lem, let B(X,Z) be a conjunctive predicate which is X-

equivalent to A(X) and let J̃(X,Z) = J(X) +
∑

z∈Z 0z.

Then for all solutions X∗, Z∗ of (max, J̃(X,Z), B(X,Z)),
X∗ is a solution of (max, J(X), A(X)). Moreover, for

all solutions X∗ of (max, J(X), A(X)), there exists

Z∗ such that X∗, Z∗ is a solution of (max, J̃(X,Z),
B(X,Z)). Finally, optimalValue(max, J(X), A(X)) = op-

timalValue(max, J̃(X,Z), B(X,Z)).

Proof: Let X∗, Z∗ be a solution of (max, J̃(X,Z),
B(X,Z)). This entails that B(X∗, Z∗) holds, and that

∀X+, Z+ such that B(X+, Z+) holds, J̃(X∗, Z∗) ≥
J̃(X+, Z+). Suppose by absurd that X∗ is not a solution for

(max, J(X), A(X)). Then, either i) A(X∗) does not hold or

ii) there exist X̃ such that A(X̃) holds and J(X∗) < J(X̃).
Case i) is not possible, since B(X∗, Z∗) holds and B(X,Z)
is X-equivalent to A(X). Case ii) is not possible since, by

X-equivalence of B(X,Z) and A(X) and by definition of

J̃(X,Z), there would exist Z̃ such that B(X̃, Z̃) holds and

J̃(X̃, Z̃) = J(X̃) > J(X∗) = J̃(X∗, Z∗).

With a similar reasoning, it is possible to prove the other

implication. Finally, equality of optimal values immediately

follows from solutions equivalence and definition of J̃ .

As a consequence of Proposition 1, the translation algo-

rithm we need must take as input a linear predicate P (X)
and return as output an X-equivalent conjunctive predicate

Q(X,Z). In the following sections, we will show how we

achieve this goal.

III. DISCRETE TIME LINEAR HYBRID SYSTEMS

Discrete Time Linear Hybrid Systems (DTLHS) provide a

suitable model for many SBCS (including embedded control

systems) since they can effectively model linear algebraic

constraints involving both continuous as well as discrete

variables. This is shown, e.g., in Example 1, that presents a

DTLHS model of a buck DC-DC converter, i.e., a mixed-

mode analog circuit that converts the Direct Current (DC)

input voltage to a desired DC output voltage.

Definition 1: A Discrete Time Linear Hybrid System is a

tuple H = (X, U, Y, N) where:

• X = Xr ∪Xd is a finite sequence of real and discrete

present state variables. X ′ denotes the sequence of next

state variables obtained by decorating with ′ variables

in X .

• U = Ur ∪ Ud is a finite sequence of input variables.

• Y = Y r∪Y d is a finite sequence of auxiliary variables.

Auxiliary variables typically models modes (switching

elements) or uncontrollable inputs (e.g., disturbances).

• N(X,U, Y,X ′) is a predicate over X ∪ U ∪ Y ∪ X ′

defining the transition relation (next state) of the sys-

tem.

Example 1: The buck DC-DC converter [15] is a mixed-

mode analog circuit (Figure 1) converting the DC input

voltage (Vi in Figure 1) to a desired DC output volt-

age (vO in Figure 1). Buck DC-DC converters are used

off-chip to scale down the typical laptop battery volt-

age (12-24) to the just few volts needed by the laptop

processor (e.g., see [15]) as well as on-chip to support

Dynamic Voltage and Frequency Scaling (DVFS) in multi-

core processors. (e.g., see [14]). Because of its widespread

use, control schemes for buck DC-DC converters have been

widely studied (e.g., see [14][15][16]). The typical software

based approach (e.g., see [15]) is to control the switch u
in Figure 1 (typically implemented with a MOSFET, i.e., a

Metal-Oxide-Semiconductor Field-Effect Transistor) with a

microcontroller.

The circuit in Figure 1 can be modeled as a DTLHS

H=(X,U, Y,N) as follows. The circuit state variables are

iL and vC . However we can also use the pair iL, vO as

state variables in H model since there is a linear relationship

between iL, vC and vO, namely: vO = rCR
rC+R

iL+ R
rC+R

vC .

Such considerations lead us to the following DTLHS model

R
C

rC

D

iD

L

u

+vu

+vD iC

+vO

Vi

iL
rL

iu +vC

Figure 1. Buck DC-DC converter

H: X = Xr = [iL, vO], U = Ud = [u], Y = Y r ∪ Y d

where Y r = [iu, vu, iD, vD] and Y d = [q]. Note how H
auxiliary variables Y stem from the constitutive equations

of the switching elements (i.e., the switch u and the diode D

in Figure 1). From a simple circuit analysis (e.g., see [17])

we have the following equations:

˙iL = a1,1iL + a1,2vO + a1,3vD (1)

˙vO = a2,1iL + a2,2vO + a2,3vD (2)

where the coefficients ai,j depend on the circuit parameters

R, rL, rC , L and C as follows: a1,1 = −
rL
L

, a1,2 = −
1
L

,

a1,3=−
1
L

, a2,1=
R

rc+R
[− rcrL

L
+ 1

C
], a2,2=

−1
rc+R

[rcR
L

+ 1
C
],

a2,3=−
1
L

rcR
rc+R

. Using a discrete time model with sampling

time T and writing x′ for x(t+ 1), we have:

i′L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (3)

v′O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (4)

The algebraic constraints stemming from the constitutive

equations of the switching elements are the following:

vD = vu − Vi (5)

iD = iL − iu (6)

(u = 1) ∨ (vu = Roff iu) (7)

(u = 0) ∨ (vu = 0) (8)

((iD ≥ 0) ∧ (vD = 0)) ∨ ((iD ≤ 0) ∧ (vD = Roff iD)) (9)

The transition relation N of H is given by the conjunction

of the linear predicates (3)–(9).

IV. FROM LINEAR TO CONJUNCTIVE PREDICATES

As shown in [8][9], MILP solvers can be used to build

a suitable discrete abstraction of a DTLHS. As shown in

Sections I and II-B (especially in Proposition 1), in order

to do this we need a translation algorithm from linear

predicates to X-equivalent conjunctive predicates. In this

section, we show how we achieve this goal, by designing

a two-steps algorithm. First, in Section IV-A, we introduce

guarded predicates and we show that each predicate P (X)
can be translated into an X-equivalent guarded predicate

Q(X,Z) at the price of introducing new auxiliary boolean

variables Z. Then, in Section IV-B, we show that, under

the hypothesis that each variable ranges over a bounded

interval, each guarded predicate can be in turn translated

into an equivalent conjunctive predicate.

A. Guarded Predicates

As formalized in Definition 2, a guarded predicate is

an implication between a boolean variable (guard) and a

predicate.

Definition 2: Given a predicate P (X) and a fresh boolean

variable z 6∈ X , the predicate z → P (X) (resp. z̄ →
P (X)) denotes the predicate (z = 0) ∨ P (X) (resp.

(z = 1) ∨ P (X)). We call z the guard variable and

both z and z̄ guard literals. Let C(X) be a constraint. A

predicate of the form z → C(X) or z̄ → C(X) is called

guarded constraint. A predicate of the form z → C(X) is

called positive guarded constraint, whilst a predicate of the

form z̄ → C(X) is called negative guarded constraint. A

generalized guarded constraint is a predicate of the form

z1 → (z2 → . . . → (zn → C(X)) . . .) A guarded predi-

cate (resp. generalized guarded predicate, positive guarded

predicate) is a conjunction of either constraints or guarded

constraints (resp. generalized guarded constraints, positive

guarded constraints).

To simplify proofs and notations, without loss of gen-

erality, we always assume guard literals to be distinct: a

conjunction z → C1(X) ∧ z → C2(X) is X-equivalent to

the guarded predicate z1 → C1(X) ∧ z2 → C2(X) ∧ z1 =
z ∧ z2 = z, being z1, z2 fresh boolean variables. Moreover,

in algorithm outlines, conjunctive (resp., guarded) predicates

will be sometimes regarded as sets of linear (resp., guarded)

constraints.

By applying standard propositional equivalences, we have

the following facts.

Fact 2: A predicate of the form z →
∧

i∈[n] Pi(X) is

equivalent to the predicate
∧

i∈[n](z → Pi(X)).

Fact 3: A generalized guarded constraint z1 → (z2 →
. . . → (zn → C(X)) . . .) is X-equivalent to the positive

guarded predicate (z −
∑

i∈[n] zi ≥ 1− n) ∧ (z → C(X)),
where z is a fresh boolean variable.

Proof: Let z be a fresh boolean variable. We have:

z1 → (z2 → . . .→ (zn → C(X)) . . .)
≡ z1 ∧ z2 ∧ . . . ∧ zn → C(X)
≡X ((z1 ∧ z2 ∧ . . . ∧ zn)→ z) ∧ (z → C(X))
≡ (z̄1 ∨ z̄2 ∨ . . . ∨ z̄n ∨ z) ∧ (z → C(X))
≡ z +

∑

i∈[n](1− zi) ≥ 1 ∧ (z → C(X))

≡ (z −
∑

i∈[n] zi ≥ 1− n) ∧ (z → C(X))

Lemma 4 and its constructive proof allow us to translate

any predicate P (X) to an X-equivalent generalized guarded

predicate Q(X,Z).
Lemma 4: For all predicates P (X), there exists a predi-

cate Q(X,Z) = G(X,Z) ∧D(Z) such that:

1) P (X) is X-equivalent to Q(X,Z);
2) G(X,Z) and D(Z) (and hence Q(X,Z)) are gener-

alized guarded predicates;

3) each generalized guarded constraint in G(X,Z) is of

the form z1 → z2 → . . .→ zm → C(X), with zi ∈ Z
and zi /∈ X for all i ∈ [m].

Proof: The proof is by induction on the structure of the

predicate P (X).

• Case P (X) = C(X) for some linear constraint C(X)
(base of the induction). Then the thesis holds with

G(X,Z) = P (X), D(Z) = 1 and Z = ∅.

• Case P (X) = P1(X) ∧ P2(X) for some predicates

P1(X), P2(X). By inductive hypothesis there exist

Z1, Z2, G1(X,Z1), D1(X,Z1), G2(X,Z2), D2(X,Z2)
such that Pi is X-equivalent to Gi(X,Zi)∧Di(Zi) for

all i ∈ {1, 2}. This entails that P (X) is X-equivalent to

G1(X,Z1)∧G2(X,Z1)∧D1(Z1)∧D2(Z1). By taking

Z = Z1∪Z2, G(X,Z) = G1(X,Z1)∧G2(X,Z2) and

D(X,Z) = D1(Z1) ∧ D2(Z2), and recalling that by

inductive hypothesis Gi, Di are generalized guarded

predicates and Zi is the set of boolean variables that

occur positively as guards in Gi (for all i ∈ {1, 2}),
the thesis follows.

• Case P (X) = P1(X) ∨ P2(X) for some predicates

P1(X), P2(X). By inductive hypothesis there exist

Z1, Z2, G1(X,Z1), D1(X,Z1), G2(X,Z2), D2(X,Z2)
such that Pi is X-equivalent to Qi(X,Zi) =
Gi(X,Zi) ∧Di(Zi) for all i ∈ {1, 2}. We can always

choose auxiliary boolean variables in such a way that

Z1 ∩ Z2 = ∅.

Taken two fresh boolean variables y1, y2 /∈ Z1 ∪ Z2,

the predicate y1 → Q1(X,Z1) ∧ y2 → Q2(X,Z2) ∧
y1 + y2 ≥ 1 is X-equivalent to P (X). For all

i ∈ {1, 2}, the predicate Q̃i(X,Zi, yi) = yi →
Qi(X,Zi) = yi → (Gi(X,Zi) ∧ Di(Zi)) is not

a generalized guarded predicate. Since Gi(X,Zi)
and Di(Zi) are generalized guarded predicates by

inductive hypothesis, we have that Gi(X,Zi) =
∧

j∈[n] G̃i,j(X,Zi) and Di(Zi) =
∧

j∈[p] D̃i,j(Zi),

being G̃i,j(X,Zi), D̃i,j(Zi) generalized guarded con-

straints. This allows us to apply Fact 2 to Q̃i(X,Zi, yi),
obtaining an equivalent predicate Ri(X,Zi, yi) =
(
∧

j∈[n] yi → G̃i,j(X,Zi)) ∧ (
∧

j∈[p] yi → D̃i,j(Zi)).
The thesis follows by taking Z = Z1 ∪ Z2 ∪ {y1, y2},
G(X,Z) =

∧

i∈{1,2}(
∧

j∈[n] yi → G̃i,j(X,Zi)), and

D(Z) =
∧

i∈{1,2}(
∧

j∈[p] yi → D̃i,j(Zi))∧ (y1 + y2 ≥
1). As for point 3, note that this is the only case in

which generalized guarded constraints in G(X,Z) are

generated, and that the generation takes place by adding

boolean fresh guards only. Being the starting predicate

only dependent on X , also point 3 is proved.

Lemma 4 and its constructive proof are exploited in

Algorithm 1, which takes as input a linear predicate P (X)
and outputs the generalized guarded predicates G(X,Z) and

D(Z). The function fresh() returns at each invocation a

(globally) fresh variable. Correctness of Algorithm 1 is given

as a corollary of Lemma 4.

Corollary 5: For all predicates P (X), Algorithm 1 re-

turns 〈G,D,Z〉 such that G(X,Z)∧D(Z) is X-equivalent

to P and fulfills all properties of Lemma 4.

Proposition 6 and its constructive proof allow us to

translate any predicate P (X) in an X-equivalent positive

guarded predicate Q(X,Z). Moreover, predicate Q(X,Z)
has a special form, i.e., it is the conjunction of two positive

guarded predicates G(X, Z̃) and D(Z), with Z̃ ⊆ Z. This is

accomplished by first translating P (X) in an X-equivalent

generalized guarded predicate Q̃(X, Z̃) by using Lemma 4.

Proposition 6: For all predicates P (X), there exists

an X-equivalent positive guarded predicate Q(X,Z) =
G(X, Z̃) ∧ D(Z), where G and D are positive guarded

predicates and Z̃ ⊆ Z.

Proof: Let Q̃(X,Z1) = G̃(X,Z1) ∧ D̃(Z1) be the

generalized guarded predicate obtained by applying the

proof of Lemma 4 (i.e., by applying Algorithm 1 to

P (X)). Let G̃(X,Z1) = G1(X,Z1) ∧
∧

i∈[n](zi,1 →
zi,2 → . . . zi,qi → Ci,1(X))), being G1 a positive

guarded predicate. By Fact 3, G̃(X,Z1) is (X ∪ Z1)-
equivalent to the positive guarded predicate G1(X,Z1) ∧
∧

i∈[n]

(

z̃i → Ci,1(X) ∧ z̃i −
∑

j∈[qi]
zi,j ≥ 1− qi

)

, where

z̃i /∈ Z1 for all i ∈ [n]. Analogously, by Fact 3 D̃(Z1) is

Z1-equivalent to the positive guarded predicate D1(Z1) ∧
∧

i∈[p]

(

ẑi → Ci,2(Z1) ∧ ẑi −
∑

j∈[ri]
zi,j ≥ 1− ri

)

,

where ẑi /∈ Z1 ∪ {z̃j | j ∈ [n]} for all i ∈ [p]. Thus the

thesis follows by taking:

• Z̃ = Z1 ∪ {z̃j | j ∈ [n]}
• Z = Z̃ ∪ {ẑj | j ∈ [p]}
• G(X, Z̃) = G1(X,Z1) ∧

∧

i∈[n] z̃i → Ci,1(X)
• D(Z) = D1(Z1) ∧

(

∧

i∈[n] z̃i −
∑

j∈[qi]
zi,j ≥ 1− qi

)

∧
(

∧

i∈[p] ẑi → Ci,2(Z1) ∧ ẑi −
∑

j∈[ri]
zi,j ≥ 1− ri

)

Proposition 6 and its constructive proof are exploited in

Algorithm 2, which takes as input a linear predicate P (X)
and outputs the positive guarded predicates G(X, Z̃) and

D(Z). To this aim, Algorithm 1 is used as an auxiliary

procedure. Correctness of Algorithm 2 is given as a corollary

of Proposition 6.

Corollary 7: For all predicates P (X), Algorithm 2 re-

turns 〈G,D, Z̃, Z〉 such that G(X, Z̃)∧D(Z) is X-equivalent

to P and Z̃ ⊆ Z.

Example 2: Let H be DTLHS in Example 1. Given the

predicate N(X,U, Y,X ′) that defines the transition rela-

tion of H, function PtoG computes the guarded predicate

Ngp(X,U, Y,X ′) which is (X ∪U ∪Y ∪X ′)-equivalent to

N as follows.

Constraints (3)–(6) remain unchanged, as they are linear

constraints in a top-level conjunction. The disjunction (9) is

Algorithm 1 From predicates to generalized guarded pred-

icates (auxiliary for Algorithm 5)

Input: P predicate over X
Output: 〈G,D,Z〉 where G(X,Z)∧D(Z) is a generalized

guarded predicate X-equivalent to P (X) (see Lemma 4)

function PtoGG(P,X)
1. if P is a constraint C(X) then return 〈C(X),∅,∅〉
2. let P = P1 ⋄ P2 (⋄ ∈ {∧,∨})
3. 〈G1, D1, Z1〉 ←PtoGG (P1)

4. 〈G2, D2, Z2〉 ←PtoGG (P2)

5. if P = P1∧P2 then return 〈G1∪G2, D1∪D2, Z1∪Z2〉

6. if P = P1 ∨ P2 then

7. y1← fresh(), y2← fresh(), Z̃←Z1 ∪ Z2 ∪ {y1, y2}
8. D̃={y1→γ|γ∈D1}∪{y2→γ|γ∈D2}∪{y1+y2≥1}

9. G̃ = {y1 → γ | γ ∈ G1} ∪ {y2 → γ | γ ∈ G2}
10. return 〈G̃, D̃, Z̃〉

first replaced by the conjunction of linear predicates (10)–

(12) as follows.

z1→(iD≥0 ∧ vD=0) (10) z2→(iD≤0 ∧ vD=Roff iD) (11)

z1 + z2 ≥ 1 (12)

Then, predicates (10)–(11) are replaced by guarded con-

straints (17)–(20) below, obtained by moving arrows in-

side the conjunctions, as shown by Fact 2. Similarly,

disjunctions (7) and (8) are replaced by guarded lin-

ear constraints (21)–(24) and (26)–(27). Summing up,

Ngp(X,U, Y,X ′) is given by the conjunction of the fol-

lowing (guarded) constraints:

i
′

L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (13)

v
′

O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (14)

vD = vu − Vi (15) iD = iL − iu (16)

z1→(iD≥0) (17)

z1→(vD=0) (18)

z2→(iD≤0) (19)

z2→(vD=Roff iD) (20)

z3→(u=1) (21)

z4→(vu=Roff iu) (22)

z5→(u=0) (23)

z6→(vu=0) (24)

z1+z2≥1 (25) z3+z4≥1 (26) z5+z6≥1 (27)

With respect to the statement of Proposition 6, we have

that Z = Z̃ = {z1, z2, z3, z4, z5, z6}, G(X,Z ′) is the

conjunction of guarded constraints (13)–(24) and D(Z) is

the conjunction of constraints (25)–(27).

B. From Guarded Predicates to Conjunctive Predicates

Guarded predicates may be translated into equivalent con-

junctive predicates (our final target for Proposition 1) once

bounds for all variables occurring in them are known. In

this section, we will show how this translation is performed,

assuming bounds to be known. In Section V, we will show

Algorithm 2 From predicates to positive guarded predicates

(auxiliary for Algorithm 5)

Input: P predicate over X
Output: 〈G,D,Z, Z̃〉 where G(X, Z̃)∧D(Z) is a positive

guarded predicate X-equivalent to P (X) (see Proposi-

tion 6)

function PtoG(P,X)
1. 〈G,D,Z〉 ←PtoGG (P , X)

2. G̃← ∅, D̃ ← ∅, Z̃ = Z
3. for all γ ∈ G ∪D do

4. if γ ≡ z1 → (. . .→ (zn → C(W)) . . .) then

5. w ←fresh(), Z ← Z ∪ {w}
6. if W ⊆ X then

7. G̃← G̃ ∪ {w → C(W)}, Z̃ ← Z̃ ∪ {w}
8. else

9. D̃ ← D̃ ∪ {w → C(W)}
10. D̃ ← D̃ ∪ {w −

∑

i∈[n] zi ≥ 1− n}
11. else if vars(γ)⊆ X then

12. G̃← G̃ ∪ {γ}
13. else

14. D̃ ← D̃ ∪ {γ}
15. return 〈G̃, D̃, Z, Z̃〉

how bounds for variables may be computed if some bounds

are already known.

Definition 3: Let P (X) be a predicate. A variable x ∈ X
is said to be bounded in P if there exist a, b ∈ Dx such that

P (X) implies a ≤ x ≤ b. A predicate P is bounded if all its

variables are bounded. We write sup(P, x) and inf(P, x) for

the minimum and maximum value that the variable x may

assume in a satisfying assignment for P . When P is clear

from the context, we will write simply sup(x) and inf(x).

Given a real number a and a variable x ∈ X over a

bounded interval, we write sup(ax) for a sup(x) if a ≥ 0
and for a inf(x) if a < 0. We write inf(ax) for a inf(x) if

a ≥ 0 and for a sup(x) if a < 0. Given a linear expression

L(X) =
∑n

i=1 aixi over a set of bounded variables, we

write sup(L(X)) for
∑n

i=1 sup(aixi) and inf(L(X)) for
∑n

i=1 inf(aixi).

Proposition 8: For each bounded guarded predicate P (X)
there exists an equivalent conjunctive predicate Q(X).

Proof: The conjunctive predicate Q(X) is obtained from

the guarded predicate P (X) by replacing each guarded con-

straint C(X) of the shape z → (L(X) ≤ b) in P (X)
with the constraint C̃(X) = (sup(L(X)) − b)z + L(X) ≤
sup(L(X)). If z = 0 we have C(X) ≡ C̃(X) since C(X)
holds trivially and C̃(X) reduces to L(X) ≤ sup(L(X))
that holds by construction. If z = 1 both C(X) and C̃(X)
reduce to L(X) ≤ b. Along the same line of reasoning,

if C(X) has the form z̄ → (L(X) ≤ b) we set C̃(X) to

(b− sup(L(X)))z + L(X) ≤ b.

Together with Proposition 6, Proposition 8 implies that

any bounded predicate P (X) can be translated into an X-

equivalent conjunctive predicate, at the cost of adding new

auxiliary boolean variables, as stated in the following propo-

sition.

Proposition 9: For each bounded predicate P (X), there

exists an X-equivalent conjunctive predicate Q(X,Z).

Example 3: Let H be the DTLHS in Example 2. We set
the parameters of H as follows:

rL=0.1Ω R=5Ω Vi=15V L=2 · 10−4H

rC =0.1Ω Roff =104 T =10−6secs C=5 · 10−5F

and we assume variables bounds as follows:

−2·104≤vu≤15 −4≤ iL≤4 −1≤vO≤7 −4≤ i′L≤96
−2·104≤vD≤0 −1.1≤v′O≤17 −4≤ iu≤4 −2≤ iD≤4

By first decomposing equations of the shape L(X) = b
in the conjunctive predicate L(X)≤ b ∧ −L(X)≤−b and

then by applying the transformation given in the proof of

Proposition 8, guarded constraints (17)–(24) are replaced by

the following linear constraints:

2z1 − iD ≤ 2 (28)

4 · 104z4 + vu − 104iu ≤ 4 · 104 (29)

6 · 104z4 − vu + 104iu ≤ 6 · 104 (30)

−2.104z1 − vD ≤ 2 · 104 (31)

2.104z2 + vD − 104iD ≤ 2.104 (32)

6.104z2 − vD + 104iD ≤ 6.104 (33)

2 · 104z6 + vu ≤ 15 (34)

2 · 104z4 − vu ≤ 2 · 104 (35)

vD ≤ 0 (36)

4z2 + iD ≤ 4 (37)

z5 + u ≤ 1 (38)

−u ≤ 0 (39)

15z6 + vu ≤ 15 (40)

z3 − u ≤ 1 (41)

u ≤ 1 (42)

V. COMPUTING VARIABLE BOUNDS

In this section, we present two algorithms that check if

a variable x is bounded in a guarded predicate G(X,Z),
where Z is the set of guard variables. If this is the case, both

algorithms return BND (for bounded) and compute a, b ∈
DX such that G(X,Z) implies a ≤ x ≤ b. If this is not the

case, then INFEAS (for infeasible) is returned if G(X,Z) is

unfeasible, and UNB (for unbounded) is returned otherwise.

The first algorithm, described in function exhCompute-

Bounds of Algorithm 3, works for all guarded predicates

G(X,Z), where Z is the set of (boolean) variables occurring

as guards in G(X,Z). Namely, it is the naïve algorithm

which, for all valuations Z∗ of B
|Z| (line 5), builds the

conjunctive predicate Q(X) = G(X,Z∗). This implies that,

for all guarded constraints G̃(X,Z) = z → C(X,Z) inside

G, if Z∗(z) is false then Q will not contain G̃, and will con-

tain only C(X,Z∗) otherwise (line 6). Then, if G(X,Z∗) is

feasible, the upper and lower bounds for x under G(X,Z∗)
are computed (lines 9 and 10). The overall maximum upper

bound and minimum lower bound are finally returned in

line 15. Unfortunately, this exhaustive procedure requires to

solve 2|Z| MILP problems.

The second algorithm, described in function compute-

Bounds of Algorithm 4, refines Algorithm 3 in order to

Algorithm 3 Computing variable bounds in a guarded

predicate (auxiliary for Algorithm 5 and 6)

Input: Guarded predicate G(X,Z) and variable x ∈ X .

Output: 〈µ, inf, sup〉 with µ ∈ {BND, UNBND, INFEAS},
inf, sup ∈ Dx∪ ⊥.

function exhComputeBounds(G,X,Z, x)
1. let G(X,Z) =

∧

i∈[n] Gi(X,Z), being each Gi(X,Z)
either a constraint Ci(X,Z) or a guarded constraint

zi → Ci(X,Z), z̄i → Ci(X,Z)
2. let g(i), for i ∈ [n], be the guard of Gi, if any , or 1

otherwise

3. let c(i, Z∗), for i ∈ [n], be true iff (g(i) = zi∧Z
∗(zi) =

1) ∨ (g(i) = z̄i ∧ Z∗(zi) = 0) ∨ g(i) = 1
4. inf ← +∞, sup← −∞, f ← 0
5. for Z∗ ∈ B

|Z| do

6. Q(X,Z∗)←
∧

i∈[n]∧c(i,Z∗) Ci(X,Z∗)
7. if feasible(Q(X,Z∗)) then

8. f ← 1
9. M ← optimalValue(max, x, Q(X,Z∗))

10. m ← optimalValue(min, x, Q(X,Z∗))
11. if M =∞∨m =∞ then

12. return 〈UNBND, ⊥,⊥〉
13. sup ← max(sup, M), inf ← min(inf , m)

14. if f then

15. return 〈BND, inf , sup〉
16. else

17. return 〈INFEAS, ⊥, ⊥〉

save unnecessary MILP invocations. Differently from Algo-

rithm 3, Algorithm 4 works only in the case that the input

is a positive guarded predicate of form G(X, Z̃) ∧ D(Z),
where G(X, Z̃) is a positive guarded predicate, D(Z) is a

conjunctive predicate, and Z̃ ⊆ Z is the set of (boolean)

variables occurring as guards in G(X, Z̃). However, such

form may be derived from the one output by Algorithm 2

(see Algorithm 5), thus we still have a method to translate

any predicate into a conjunctive predicate.

Algorithm 4 is based on the observation that, if an

assignment Z∗
1 makes true more guards than an assignment

Z∗
2 , then the conjunctive predicate G(X,Z∗

1) has more

constraints than G(X,Z∗
2). Therefore, if x is bounded in

G(X,Z∗
2), then it is also bounded in G(X,Z∗

1), and if

G(X,Z∗
2) is unfeasible, then also G(X,Z∗

1) is unfeasi-

ble (Proposition 10). In the following, we establish the

correctness of function computeBounds . We begin with a

proposition on fixing boolean values in a positive guarded

predicate.

Proposition 10: Let Z = [z1, . . . , zn] and let G(X,Z) =
∧

i∈[n](zi → Ci(X)) be a conjunction of positive guarded

constraints. Then:

1) For any Z∗∈Bn, G(X,Z∗) is equivalent to the con-

junctive predicate
∧

j∈Ones(Z∗)Cj(X).

2) If Z∗
1 ≤ Z∗

2 , then G(X,Z∗
2)⇒G(X,Z∗

1).

Proof: Statement 1 easily follows by observing that a

guarded constraint z → C(X) is trivially satisfied if z is

assigned to 0 and it is equivalent to C(X) if z is assigned

to 1. Statement 2 follows from the observation that a ≤ b
implies Ones(a) ⊆ Ones(b) and hence G(X, b) has more

constraints than G(X, a).

Algorithm 4 is based on the capability of operating cuts

on the boolean space. Definition 4 formalizes this concept.

Definition 4: We say that a set C ⊆ B
n is a cut if for all

b ∈ B
n we have b ≤ C or b ≥ C. Let D(Z) be a predicate

over a set boolean variables Z = Z1 ∪Z2. A cut C ⊆ B
|Z2|

is (D,Z2)-minimal if

• for all c ∈ C, D(Z1, c), is satisfiable

• for all b < C, D(Z1, b) is not satisfiable.

Proposition 11 shows how cuts are exploited by Algo-

rithm 4. Namely, to verify that a variable x is bounded in the

positive guarded predicate G(X, Z̃)∧D(Z), where D(Z) is

a conjunctive predicate, it suffices to check if it is bounded in

the conjunctive predicate G(X, c), for all c that are (D, Z̃)-
minimal cuts.

Algorithm 4 Computing variable bounds in a positive

guarded predicate (auxiliary for Algorithms 5 and 6)

Input: Positive guarded predicate G(X, Z̃), conjunctive

predicate D(Z) with Z̃ ⊆ Z set of guards in G(X, Z̃),
and variable x ∈ X .

Output: 〈µ, inf, sup〉 with µ ∈ {BND, UNBND, INFEAS},
inf, sup ∈ Dx∪ ⊥.

function computeBounds(G,D,X,Z, Z̃, x)
1. C←∅, r←|Z̃|, inf←+∞, sup←−∞, f← 0
2. r′←optimalValue(min,

∑

i∈[r] zi, D(Z))
3. r′′←optimalValue(max,

∑

i∈[r] zi, D(Z))
4. for k = r′ to r′′ do

5. end← 1
6. for all b ∈ B

r
k do

7. if C 6≤b then

8. end← 0
9. if feasible(D(Z, c)) then

10. C�C ∪ {b}
11. if feasible(G(X, b)) then

12. f ← 0
13. M ← optimalValue(max, x, G(X, b))
14. m ← optimalValue(min, x, G(X, b))
15. if M=∞ or m=∞ then

16. return 〈UNBND, ⊥,⊥〉
17. sup ← max(sup, M), inf ← min(inf , m)

18. if end then break

19. if f then

20. return 〈BND, inf , sup〉
21. else

22. return 〈INFEAS, ⊥, ⊥〉

Proposition 11: Let Q(X,Z) = G(X, Z̃)∧D(Z), where

G(X, Z̃) is a positive guarded predicate, D(Z) is a conjunc-

tive predicate, and Z̃ ⊆ Z is the set of (boolean) variables

occurring as guards in G(X, Z̃). Let C be a (D, Z̃)-minimal

cut and x ∈ X . If, for all c ∈ C, x is bounded in G(X, c),
then x is bounded in Q(X,Z).

Proof: Since C is a (D, Z̃)-minimal cut, any sat-

isfying assignment (X∗, Z∗) to Q is such that C ≤
Z̃∗. As a consequence, there exists c ∈ C such that

c ≤ Z̃∗. Proposition 10 (point 2) implies that, for all

Z∗ ≥ C, max{x | G(X,Z∗)} ≤ max{x | G(X, c)} and

min{x | G(X,Z∗)} ≥ min{x | G(X, c)}. Therefore, if x
is bounded in Q(X, c) for any c ∈ C, then it is bounded in

Q(X,Z).
Stemming from Proposition 11, function computeBounds

(Algorithm 4) checks if a variable x is bounded in a

guarded predicate by finding a minimal cut. To limit the

search space, in line 2 (resp. line 3) it is computed the

minimum (resp. maximum) number of 1 that a satisfying

assignment to the predicate D(Z) must have. The loop in

lines 4–18 examines possible assignments to guard variables

in Z, keeping the invariant ∀b < C[¬feasibleG(X, b)] ∧
∀b ≥ C[max{x | G(X,Z)} ≤ max{x | G(X, b)} ∧
min{x | G(X,Z∗)} ≥ min{x | G(X, b)}]. In the loop

in lines 6–17, if the assignment c under consideration is

greater than an assignment in C, no further investigation

are needed (by Proposition 11 x is bounded in Q(X, c)). If

D(Z \ Z̃, b) is unfeasible, the assignment c is not relevant,

because c ≤ C, for any (D, Z̃)-minimal cut C. Otherwise, c
is a relevant assignment and it is added to C (line 10). If x is

unbounded in Q(X, c) (lines 13 and 16) we can immediately

conclude that x is unbounded in Q(X,Z). Otherwise, we

update the approximations computed for inf(x) and sup(x)
(line 17). If for all assignments in c ∈ B

n
k we have c ≥ C

(Bn
k is a cut) we are done, C is a (D, Z̃)-minimal cut, and

inf and sup computed so far are over-approximation of x
bounds in Q(X,Z) (line 18).

The above reasoning gives the proof of correctness for

function computeBounds of Algorithm 4.

Proposition 12: Let G(X, Z̃) be a positive guarded pred-

icate, D(Z) be a conjunctive predicate, where Z̃ is the set

of guards in G(X, Z̃) and Z̃ ⊆ Z, and let x ∈ X . Then

function computeBounds of Algorithm 4 returns:

• 〈UNBND,⊥,⊥〉 if G(X, Z̃) ∧ D(Z) is unbounded in

x;

• 〈INFEAS,⊥,⊥〉 if G(X, Z̃) ∧D(Z) is unfeasible;

• 〈BND, a, b〉 if G(X, Z̃)∧D(Z) is bounded, where a, b
are such that G(X, Z̃) ∧D(Z) implies a ≤ x ≤ b.

Example 4: In Example 3 we assumed bounds for each

variable in the DTLHS H introduced in Example 1. Such

bounds has been obtained by fixing bounds for state vari-

ables iL and vO and for auxiliary variables iu, vu, vD and

iD, and then by computing bounds for variables i′L, v′O using

Algorithm 4.

Algorithm 5 From predicates to conjunctive predicates

Input: P predicate over X and modality ν ∈ {EXH, CUT}
Output: result µ and conjunctive predicate C(X,Z) such

that C(X,Z) is X-equivalent to P (X) if P (X) is

bounded.

function PtoC(P,X, ν)
1. 〈G,D,Z, Z̃〉 ←PtoG (P,X)

2. D̃ ←GtoC (D,Z,0,1)

3. for all x ∈ X do

4. if ν = CUT then

5. 〈µ,mx,Mx〉 ←computeBounds(G, D̃,X,Z, Z̃, x)

6. else

7. 〈µ,mx,Mx〉 ←exhComputeBounds(G(X, Z̃) ∧
D̃(Z), X ∪ Z, x)

8. if µ 6= BND then

9. return 〈µ,⊥〉
10. return 〈BND,GtoC(G,X ∪ Z,m,M)〉

Function PtoC of Algorithm 5 presents the overall

procedure that translates a bounded predicate P (X) into

an X-equivalent conjunctive predicate C(X,Z). Function

PtoC calls functions in Algorithms 1–4 and function

GtoC (A,W,m,M), which translates a bounded guarded

predicate A(W) with known lower bounds m and upper

bounds M for variables in W in a conjunctive predicate,

as shown in the proof of Proposition 8. As a first step,

Algorithm 5 translates the input predicate P (X) into an X-

equivalent guarded predicate G(X, Z̃) ∧ D(Z) by calling

the function PtoG (line 1). Since boolean variables are

trivially bounded (bounds are vectors 0 = 〈0, . . . , 0〉 and

1 = 〈1, . . . , 1〉), the guarded predicate D can be translated

into a conjunctive predicate D̃ by calling the function GtoC

on D (line 2). To apply function GtoC on G(X, Z̃), we need

bounds for each variable in X . These bounds are computed

by calling |X| times the function computeBounds and are

stored in the two arrays m,M (lines 3 and 5). If the function

computeBounds finds that G̃ is unfeasible or some x is

not bounded in G̃ (line 8), the empty constraint is returned

together with the failure explanation (line 9). Otherwise, the

desired conjunctive predicate is returned in line 10.

Correctness of function PtoC of Algorithm 5 is stated in

Proposition 13.

Proposition 13: Let P (X) be a predicate. Then function

PtoC of Algorithm 5 returns:

• 〈UNB,⊥〉 if P (X) is unbounded for some x ∈ X;

• 〈INFEAS,⊥〉 if P (X) is unfeasible;

• 〈BND, C(X,Z)〉 if P (X) is bounded, being C(X,Z) a

conjunctive predicate which is X-equivalent to P (X).

Proof: The proof easily follows Propositions 5, 7, 8

and 12.

We end this section by proposing a syntactic check, that

most of the time may be used to compute variable bounds

avoiding to use the function computeBounds .

Definition 5: A variable x is explicitly bounded in a pred-

icate P (X), if P (X) =B(x) ∧ P̃ (X), where B(x) = x≤
b ∧ x≥a, for some constants a and b.

Proposition 14: Let H=(X,U, Y,N) be a DTLHS such

that each variable v∈X∪U ∪Y is explicitly bounded in N ,

and for all x′∈X ′ there are in N at least two constraints of

the form x′≥L1(X,U, Y) and x′≤L2(X,U, Y). Then N
is bounded.

Proof: Since all variables in X , U , and Y are explicitly

bounded in N , they are also bounded in N . Therefore

inf(L1(X,U, Y)) and sup(L2(X,U, Y)) are finite. Since N
is guarded, it is a conjunction of guarded constraints and

for all x′ ∈ X ′ it can be written as x′ ≥ L1(X,U, Y) ∧
x′ ≤ L2(X,U, Y) ∧ Ñ(X,U, Y,X ′) for a suitable guarded

predicate Ñ . This implies inf(L1(X,U, Y)) ≤ x′ ≤
sup(L2(X,U, Y)), which in turn implies that x′ is bounded

in N .

Example 5: Let H1 be the DTLHS ({x}, {u},∅, N1),
where N1(x, u, x

′) = (0 ≤ x ≤ 3)∧(0 ≤ u ≤ 1)∧(x′ = x+
3u). By Proposition 14, H1 is bounded with inf(x′) = 0 and

sup(x′) = 6. All other variables are explicitly bounded in N .

Explicit bounds on present state and input variables do not

imply that next state variables are bounded. As an example,

let us consider the DTLHS H2 = ({x}, {u},∅, N2), where

N2(x, u, x
′) = (0 ≤ x ≤ 3)∧ (0 ≤ u ≤ 1)∧ (x′ ≥ x+3u).

Since, for any value of x and u, x′ can assume arbitrary

large values, we have that N2 is not bounded.

VI. GUARDED PREDICATES AS MODELING LANGUAGE

The disjunction elimination procedure given in Algorithm 5

returns a guarded predicate that may contain a large number

of fresh auxiliary boolean variables and this may heavily

impact on the effectiveness of control software synthesis

or verification (as well as the complexity of Algorithm 5

itself, since the auxiliary Algorithm 4 depends on the number

of guard variables). On the other hand, guarded predicates,

which are used as an intermediate step in Algorithm 5, are

themselves a natural language to describe DTLHS behavior:

assignments to guard variables play a role similar to modes

in hybrid systems and, by using negative literals as guards,

we can naturally model different kinds of plant behavior

according to different commands sent by actuators.

Example 6: By directly using guarded predicates as mod-

eling language, the DTLHS of Example 1 may be modeled

by the conjunction of guarded constraints (43)–(52).

i
′

L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (43)

v
′

O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (44)

vD = vu − Vi (45)

iD = iL − iu (46)

u→vu=0 (47)

ū→vu=Roff iu (48)

q→vD=0 (49)

q→ iD≥0 (50)

q̄→vD=Roff iD (51)

q̄→vD≤0 (52)

Algorithm 6 From guarded predicates to conjunctive pred-

icates

Input: G(X,Z) guarded predicate over X with guards in

Z and modality ν ∈ {EXH, CUT}.
Output: result µ and conjunctive predicate C(X,Z) such

that C(X,Z) is X-equivalent to G(X,Z) if G(X,Z)
is bounded.

function GPtoC(G,X,Z, ν)
1. let G and g be as in lines 1–2 of Algorithm 3

2. if ν = CUT then

3. Ẑ ← {z ∈ Z | ∃i : g(i) = z̄ ∨ g(i) = z} ∪ {z̃ ∈
Z | ∃i : g(i) = z̄}

4. Z ← Z ∪ {z̃ ∈ Z | ∃i : g(i) = z̄}
5. G(X, Ẑ) ←

∧

i∈[n]∧g(i)=zi
g(i) → Ci(X,Z) ∧

∧

i∈[n]∧g(i)=z̄i
z̃i → Ci(X,Z)

6. D(Z) ←
∧

i∈[n]∧g(i)=1 Ci(X,Z) ∧
∧

z∈Z∧∃i:g(i)=z̄ z̃ + z = 1
7. for all x ∈ X do

8. if ν = CUT then

9. 〈µ,mx,Mx〉 ←computeBnds(G,D,X,Z, Ẑ, x)

10. else

11. 〈µ,mx,Mx〉 ←exhComputeBounds(G,X,Z, x)

12. if µ 6= BND then

13. return 〈µ,⊥〉
14. return 〈BND,GtoC(G,X ∪ Z,m,M)〉

Note that disjunctions (7)–(9) in Example 1 have been re-

placed by guarded constraints (47)–(52). The resulting model

for the buck DC-DC converter is much more succinct than

the guarded model in Example 2 and it has 2 guard vari-

ables only, rather than 6 as in Example 2 (and 10 guarded

constraints rather than 15).

Algorithm 4 cannot be directly applied to guarded predi-

cates with both positive and negative guard literals. This ob-

struction can be easily bypassed, by observing that a guarded

constraint z̄ → C(X) is (X∪{z})-equivalent to the positive

guarded predicate (z̃ → C(X))∧ (z̃+ z = 1). On the other

hand, guarded predicates with both positive and negative

guard literals may be directly translated in a conjunctive

predicate by using the exhaustive procedure in Algorithm 3

to compute variable bounds. Both such translations are out-

lined in function GPtoC of Algorithm 6. Namely, if ν =
CUT then the input guarded predicate is translated in a pos-

itive guarded predicate and then Algorithm 4 is used. Oth-

erwise, i.e., if ν = EXH then the exhaustive Algorithm 3 is

used directly on the original guarded predicate. Note that the

above described method to obtain a positive guarded pred-

icate from a guarded predicate (lines 3–6 in Algorithm 6)

doubles the number of variables originally used as negative

guards. Thus, it turns out that it is more convenient to call

function GPtoC with ν = EXH (see experimental results in

Section VII).

Summing up, guarded predicates turn out to be a pow-

erful and natural modeling language for describing DTLHS

transition relations.

VII. EXPERIMENTAL RESULTS ON A CASE STUDY

In this section, we evaluate the effectiveness of our predi-

cate translation functions, i.e., function PtoC of Algorithm 5

and function GPtoC of Algorithm 6. To this end, we im-

plemented such functions in C programming language, us-

ing GLPK to solve MILP problems. We name the resulting

tools PTOC (Predicates to Conjunctive predicates transla-

tor) and GPTOC (Guarded Predicates to Conjunctive pred-

icates translator). We will write calls to functions PtoC

(resp. GPtoC) with ν = ν̃ as PTOC(ν̃) (resp., GPTOC(ν̃)).

PTOC and GPTOC are part of a more general tool named

Quantized feedback Kontrol Synthesizer (QKS) [8][9].

We present the experimental results obtained by using

PTOC and GPTOC on a n-inputs buck DC-DC converter

(described in Section VII-A), that we model with two

DTLHSs Hi = (Xi, Ui, Yi, Ni), with i ∈ [2], such that

X1 = X2, U1 = U2, Y1 ⊂ Y2, N1(X1, U1, Y1, X
′
1) is a

predicate, and N2(X2, U2, Y2, X
′
2) is a guarded predicate

(X1∪U1∪Y1∪X
′
1)-equivalent to N1. All experiments have

been carried out on a 3.00GHz Intel Xeon hyperthreaded

Quad Core Linux PC with 8GB of RAM.

We run PTOC on N1 and GPTOC on N2 for increas-

ing values of n (which entails that the number of guards

increases), in order to show effectiveness of PTOC and GP-

TOC. To this end, both values for parameter ν will be used,

which means that, for each n, 4 experiments are run. In

Section VII-B we show experimental results PTOC. Further-

more, in Section VII-C we show that results obtained with

GPTOC(EXH) are better than those obtained with both GP-

TOC(CUT) and PTOC. That is, the best results are obtained

by exploiting knowledge of the system and modeling it with

guarded predicates, and then using the exhaustive algorithm.

A. Multi-Input Buck DC-DC Converter

A Multi-Input Buck DC-DC Converter [18] (Figure 2),

consists of n power supplies with voltage values V1<. . .<
Vn, n switches with voltage values vu1 , . . . , v

u
n and current

values Iu1 , . . . , I
u
n , and n input diodes D0, . . . , Dn−1 with

voltage values vD0 , . . . , vDn−1 and current values iD0 , . . . , iDn−1

(in the following, we will also write vD for vD0 and iD for

iD0). As for the converter in Example 1, the state variables

are iL and vO, whereas action variables are u1, . . . , un, thus

a control software for the n-input buck DC-DC converter has

to properly actuate the switches u1, . . . , un. Constant values

are the same given in Example 3.

B. Multi-Input Buck as a Predicate

We model the n-input buck DC-DC converter

with the DTLHS H1 = (X1, U1, Y1, N1),
where X1 = [iL, vO], U1 = [u1, . . . , un], and

R+
v
O

L

i D

V
n

V
n
−
1

V
i

V
1

I
u n

I
u n
−
1

I
u i

+
v
u n

u
n

D
0

D
1

D
i

D
n
−
1

i L
r
L

+
v
C

C r
C

i C

+
v
u i

u
n
−
1

u
i

+
v
D

. .
.

. .
.

I
u 1

+
v
D 1

+
v
D i

+
v
u n
−
1

+
v
D n
−
1

+
v
u 1

u
1

Figure 2. Multi-input Buck DC-DC converter

Y1 = [vD, vD1 , . . . , vDn−1, iD, Iu1 , . . . , I
u
n , v

u
1 , . . . , v

u
n].

From a simple circuit analysis (e.g., see [17]), we have that

N1 is the conjunction of linear predicates (53)–(61).

i
′

L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (53)

v
′

O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (54)

((iD ≥ 0) ∧ (vD = 0)) ∨ ((iD ≤ 0) ∧ (vD = Roff iD)) (55)

∧

i∈[n]

(ui=0) ∨ (vui =0) (56)

∧

i∈[n]

(ui=1) ∨ (vui =RoffI
u
i) (57)

∧

i∈[n−1]

((Iui ≥0) ∧ (vDi =0)) ∨ ((Iui ≤0) ∧ (vDi =RoffI
u
i)) (58)

iL= iD+

n∑

i=1

I
u
i (59)

∧

i∈[n−1]

vD=v
u
i +v

D
i −Vi (60)

vD=v
u
n−Vn (61)

N1 also contains the following explicit bounds: −4≤ iL≤
4 ∧ −1≤ vO ≤ 7∧ −103 ≤ iD ≤ 103 ∧

∧n

i=1−10
3 ≤ Iui ≤

103 ∧
∧n

i=1−10
7 ≤ vui ≤ 107 ∧

∧n−1
i=0 −10

7 ≤ vDi ≤ 107.

Table I
PTOC PERFORMANCE (PREDICATES)

n r r′ r′′ k |cut| CPUc Memc CPUe Meme |In| |Out|

2 12 6 12 11 64 1.07e+00 5.14e+07 3.07e+01 5.14e+07 21 44
3 18 9 18 17 512 9.63e+01 5.15e+07 2.92e+03 5.14e+07 30 63
4 24 12 24 23 4096 1.15e+04 5.15e+07 >1.38e+06 N/A 39 82

We run PTOC(CUT) with parameters N1, X1∪U1∪Y1∪X
′
1

for increasing values of n, and we compare its computation

time with that of PTOC(EXH) with the same input param-

eters. Table I shows our experimental results. In Table I,

columns meaning are as follows:

• column n shows the number of buck inputs;

• column r shows the number of guards (see line 1 of

Algorithm 4);

• columns r′, r′′ have the meaning given in lines 2 and 3

of Algorithm 4;

• column k gives the value of k at the end of the outer

for loop of Algorithm 4;

• column |cut| gives the size of cut at the end of the for

loop of Algorithm 4;

• columns CPUc and Memc (resp. CPUe and Meme)

show the computation time in seconds and memory

usage in bytes of PTOC(CUT) (resp., of PTOC(EXH))

• column |In| shows the size of the input predicate, as the

number of linear constraints (i.e., of the linear predicate

atoms) in the input linear predicate N1;

• column |Out| shows the size of the output conjunctive

predicate, as the resulting number of linear constraints

in the output conjunctive predicate.

C. Multi-Input Buck as a Guarded Predicate

We modify the DTLHS H1 of Section VII-B by defin-

ing H2 = (X2, U2, Y2, N2), where X2 = X1, U2 = U1,

Y2 = Y1 ∪ Y ′
2 = Y1 ∪ {q0, . . . , qn−1} and N2 is obtained

from N1 by replacing disjunctions (55)–(58) with guarded

constraints. Thus, N1 is given by the conjunction of guarded

constraints (62)–(76).

i
′

L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (62)

v
′

O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (63)

q→vD=0 (64)

q→ iD≥0 (65)

q̄→vD=Roff iD (66)

q̄→vD≤0 (67)

∧

i∈[n−1]

qi→v
D
i =0 (68)

∧

i∈[n−1]

qi→I
u
i ≥0 (69)

∧

i∈[n]

ui→v
u
i =0 (70)

∧

i∈[n−1]

q̄i→v
D
i ≤0 (71)

∧

i∈[n−1]

q̄i→v
D
i =RoffI

u
i (72)

∧

i∈[n]

ūi→v
u
i =RoffI

u
i (73)

iL= iD+

n∑

i=1

I
u
i (74)

∧

i∈[n−1]

vD=v
u
i +v

D
i −Vi (75)

vD=v
u
n−Vn (76)

We call both GPTOC(CUT) and GPTOC(EXH) with pa-

rameters N2, X2 ∪U2 ∪ Y2 ∪X
′
2 for increasing values of n,

and we compare their computation times.

Table II shows our experimental results. Columns mean-

ing in Table II are the same as of Table I. An additional

column |Y2| shows the number of guard variables in N2.

D. Evaluation

Results in Table I show that heuristics implemented in

function computeBounds are indeed effective w.r.t. execut-

ing function exhComputeBounds . In fact, by comparing

columns CPUc and CPUe (and recalling that the only differ-

ence between PTOC(CUT) shown in CPUc and PTOC(CUT)

shown in CPUe is that the former calls function compute-

Bounds whilst the latter calls function exhComputeBounds),

we see that such heuristics provide at least a one-order-of-

magnitude speed-up in variable bounds computation. Such

speed-up rapidly grows with the size of the input. In fact,

for the 4-bits buck DC-DC converter, PTOC(EXH) requires

more than 2 weeks, whilst PTOC(CUT) terminates in about

3 hours. Moreover, we also note that the resulting number

of linear constraints output by PTOC is at most twice the

starting number of linear constraints.

PTOC(CUT) is however not effective on the n-input buck

DC-DC converter for n ≥ 5. In fact, for n = 5, there are

30 boolean guards (i.e., r = 30), and the heuristics do not

provide enough speed-up to obtain termination in a reason-

able time. However, if we directly use guarded predicates as

input language as in Section VII-C, we are able to generate

the conjunctive predicate for both n = 5 and n = 6. This

is due to the smaller number of guard variables used in

Section VII-C than that used in Section VII-B. The negative

impact of auxiliary boolean variables is clearly showed by

the fact that GPTOC(EXH), much slower than GPTOC(CUT)

on a model of the same size, performs better than GP-

TOC(CUT) in this case, because it can work on a model with

half of the variables (see columns |Y2| and r). The same

holds if we compare results of GPTOC(EXH) with those

of PTOC(EXH) and PTOC(CUT). This phenomenon would

be greatly amplified in a verification or control software

synthesis procedure. These results strongly support guarded

predicates as modeling language.

Table II
GPTOC PERFORMANCE (GUARDED PREDICATES)

n |Y2| r r′ r′′ k |cut| CPUc Memc CPUe Meme |In| |Inpos| |Out|

2 4 8 4 4 4 16 2.80e-01 5.14e+07 2.50e-01 5.14e+07 17 21 38
3 6 12 6 6 6 64 9.70e-01 5.15e+07 9.70e-01 5.15e+07 24 30 54
4 8 16 8 8 8 256 1.04e+01 5.16e+07 3.41e+00 5.15e+07 31 39 70
5 10 20 10 10 10 1024 1.75e+02 5.17e+07 1.69e+01 5.16e+07 38 48 86
6 12 24 12 12 12 4096 2.55e+03 5.17e+07 8.57e+01 5.17e+07 45 57 102

VIII. RELATED WORK

This paper is an extended version of [1]. With respect

to [1], this paper provides more details in the introduction

and in the related work description, extends basic definitions

and algorithms descriptions, gives more detailed proofs for

theorems, and provides a revised and enriched version of the

experiments.

MILP problems solving based abstraction

techniques have been designed for the verification

of Discrete Time Hybrid Automata (DHA) [5] and

implemented within the symbolic model checker HYSDEL

[19]. A MILP based DTLHS abstraction algorithm is the

core of automatic control software synthesis from system

level specifications in [8][9], and it requires DTLHS

dynamics modeled as a conjunctive predicate. The same

limitation occurs in abstraction techniques based on

the Fourier-Motzkin procedure for existential quantifier

elimination [20]. All such approaches may exploit the

translation algorithm presented here in order to improve

their applicability.

Automatic or automatable translation procedures targeting

MILP formulations have been presented in [21] and [22].

Namely, in [22] the authors propose an approach to trans-

late (reformulate in their parlance) mixed integer bilinear

problems (i.e., problems in which constraints may contain

products of a nonnegative integer variable and a nonnegative

continuous variable) into MILP problems. This reformula-

tion is obtained by first replacing a general integer variable

with its binary expansion and then using McCormick en-

velopes to linearize the resulting product of continuous and

binary variables. In [21], the authors present an automatic

conversion from deterministic finite automata to MILP for-

mulations. This allows to efficiently combine supervisory

control theory and MILP to automatically generate time-

optimal, collision-free and non-blocking working schedules

for a flexible manufacturing system. Both these works differ

from ours in the starting point of the translation procedure

(and of course in the actual algorithms designed): in [21]

they are interested in translating deterministic finite au-

tomata, whilst in [22] the goal is to translate mixed integer

bilinear problems. On the other hand, in this paper we are

interested in translating conjunctions and disjunctions of

linear constraints (see Section II-A), thus the approaches

in [21][22] cannot be used in our context.

Many works in the literature deal with automatic spec-

ification of MILP problems in order to solve customized

synthesis problem. As an example, in [23] the target is a

formal synthesis approach to design of optimal application-

specific heterogeneous multiprocessor systems. As a further

example, in [24], a topology synthesis method for high

performance System-on-Chip design is presented. Finally,

in [25] the development of a technique to target fresh

water consumption and wastewater generation for systems

involving multiple contaminants is presented. In this paper,

rather than giving a MILP scheme to be properly customized

to solve a problem of a given type, we provide a translation

from a general-purpose predicate to an equivalent MILP

problem.

Finally, we note that the automatic procedure presented

in this paper is reminiscent of Mixed Integer Program-

ming modeling techniques [26] in Operations Research and

boolean formula transformations involved in the conver-

sion of a formula into a conjunctive or disjunctive normal

form [6][27].

IX. CONCLUSIONS AND FUTURE WORK

The results presented in this paper contribute to model

based design of SBCS (most notable, of embedded software)

by proposing an expressive modeling language for DTLHS.

In fact, in our previous work MILP based approaches

have been used to synthesize correct-by-construction control

software for DTLHSs. However, such approaches require

DTLHS dynamics to be modeled as a conjunctive linear

predicate over state, input, and next state variables. This

may turn out to be not practically feasible for DTLHSs with

complex dynamics.

In this paper, we circumvented such a limitation, by giv-

ing an automatic procedure that translates any disjunction-

conjunction of linear constraints into an equisatisfiable con-

junctive predicate, provided that each variable ranges over a

bounded interval. This last proviso is automatically enforced

by our procedure, since it includes a routine algorithm that,

taking a linear predicate P and a variable x, verifies if x
is bounded in P , by computing (an over-approximation of)

bounds for x.

Finally, our experimental results show the effectiveness

of our approach on an important and challenging case study

taken from the literature, namely the multi-input Buck DC-

DC Converter. As an example, the linear predicate that

models a 4-inputs buck DC-DC converter with 39 linear con-

straints is translated into a conjunctive predicate of 82 linear

constraints in slightly more than 3 hours. Most notably, our

experimental results show that guarded predicates, which

are used by our translation procedure as an intermediate

language, turn out to be a natural language to succinctly

describe DTLHS dynamics. In fact, the guarded predicate

that models a 6-inputs Buck DC-DC Converter with 57

constraints (including 12 different guards), is translated into

a conjunctive predicate of 102 linear constraints in about 40

minutes.

The presented approach has the main drawback to be

exponential on the number of boolean guards used in the

(initial or intermediate) guarded predicate. As a future work,

we aim to counteract such a limitation by recognizing if the

input predicate is of some known structure. As an example,

if the guarded predicate is composed by k blocks of the same

structure, we may translate just one of such blocks and then

suitably copy the resulting conjunctive predicate k times.

ACKNOWLEDGMENTS

Our work has been partially supported by: MIUR project

DM24283 (TRAMP) and by the EC FP7 projects GA600773

(PAEON) and GA317761 (SmartHG).

ACRONYMS

AD Analog-to-Digital. 1

DA Digital-to-Analog. 1

DC Direct Current. 4

DHA Discrete Time Hybrid Automata. 12

DTLHS Discrete Time Linear Hybrid System. 1, 2, 4, 6,

7, 9–13

DVFS Dynamic Voltage and Frequency Scaling. 4

MILP Mixed Integer Linear Programming. 1–4, 7, 10, 12,

13

NFSA Nondeterministic Finite State Automaton. 1

QKS Quantized feedback Kontrol Synthesizer. 10

SBCS Software Based Control System. 1

REFERENCES

[1] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Linear constraints
as a modeling language for discrete time hybrid systems,” in
ICSEA, 2012, pp. 664–671.

[2] T. A. Henzinger and J. Sifakis, “The embedded systems
design challenge,” in FM, ser. LNCS 4085, 2006, pp. 1–15.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,
P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine,
“The algorithmic analysis of hybrid systems,” Theoretical
Computer Science, vol. 138, no. 1, pp. 3 – 34, 1995.

[4] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic
verification of embedded systems,” IEEE Trans. Softw. Eng.,
vol. 22, no. 3, pp. 181–201, 1996.

[5] A. Bemporad and M. Morari, “Verification of hybrid systems
via mathematical programming,” in HSCC, ser. LNCS 1569,
1999, pp. 31–45.

[6] F. Mari and E. Tronci, “CEGAR based bounded model
checking of discrete time hybrid systems,” in HSCC, ser.
LNCS 4416, 2007, pp. 399–412.

[7] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci,
“Automatic control software synthesis for quantized discrete
time hybrid systems,” in CDC. IEEE, 2012, pp. 6120–6125.

[8] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” in CAV, ser. LNCS 6174, 2010, pp. 180–195.

[9] ——, “Model based synthesis of control software from
system level formal specifications,” ACM Trans. on Soft.
Eng. and Meth., vol. To appear. [Online]. Available:
http://mclab.di.uniroma1.it/publications/papers/federicomari/
2013/110_FedericoMari2013.pdf

[10] ——, “Undecidability of quantized state feedback control for
discrete time linear hybrid systems,” in Proceedings of the
International Colloquium on Theoretical Aspects of Comput-
ing, ICTAC, ser. LNCS, A. Roychoudhury and M. D’Souza,
Eds., vol. 7521. Springer-Verlag Berlin Heidelberg, 2012,
pp. 243–258.

[11] ——, “Synthesizing control software from boolean relations,”
Int. J. on Advances in SW, vol. 5, no. 3&4, pp. 212–223, 2012.

[12] “Gnu GLPK Web Page: http://www.gnu.org/software/glpk/,”
last accessed 6 mar 2013.

[13] “CPLEX Web Page: http://www-
01.ibm.com/software/integration/optimization/cplex-
optimization-studio/,” last accessed 6 mar 2013.

[14] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “En-
abling on-chip switching regulators for multi-core processors
using current staggering,” in ASGI, 2007.

[15] W.-C. So, C. Tse, and Y.-S. Lee, “Development of a fuzzy
logic controller for dc/dc converters: design, computer simu-
lation, and experimental evaluation,” IEEE Trans. on Power
Electronics, vol. 11, no. 1, pp. 24–32, 1996.

[16] V. Yousefzadeh, A. Babazadeh, B. Ramachandran, E. Alar-
con, L. Pao, and D. Maksimovic, “Proximate time-optimal
digital control for synchronous buck dc–dc converters,” IEEE
Trans. on Power Electronics, vol. 23, no. 4, pp. 2018–2026,
2008.

[17] P.-Z. Lin, C.-F. Hsu, and T.-T. Lee, “Type-2 fuzzy logic
controller design for buck dc-dc converters,” in FUZZ, 2005,
pp. 365–370.

[18] M. Rodriguez, P. Fernandez-Miaja, A. Rodriguez, and J. Se-
bastian, “A multiple-input digitally controlled buck converter
for envelope tracking applications in radiofrequency power
amplifiers,” IEEE Trans. on Power Electronics, vol. 25, no. 2,
pp. 369–381, 2010.

[19] F. Torrisi and A. Bemporad, “HYSDEL — A tool for gener-
ating computational hybrid models for analysis and synthesis
problems,” IEEE Transactions on Control System Technology,
vol. 12, no. 2, pp. 235–249, 2004.

[20] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke,
“Reachability for linear hybrid automata using iterative re-
laxation abstraction,” in HSCC, ser. LNCS 4416, 2007, pp.
287–300.

[21] A. Kobetski and M. Fabian, “Scheduling of discrete event
systems using mixed integer linear programming,” in Discrete
Event Systems, 2006 8th International Workshop on, july
2006, pp. 76 –81.

[22] A. Gupte, S. Ahmed, M. S. Cheon, and S. S.
Dey, “Solving mixed integer bilinear problems using
milp formulations,” SIAM J. on Optimization, vol.
To appear. [Online]. Available: http://www.optimization-
online.org/DB_FILE/2011/07/3087.pdf

[23] S. Prakash and A. C. Parker, “Readings in hardware/software
co-design,” G. De Micheli, R. Ernst, and W. Wolf, Eds.
Norwell, MA, USA: Kluwer Academic Publishers, 2002,
ch. SOS: synthesis of application-specific heterogeneous

multiprocessor systems, pp. 324–337. [Online]. Available:
http://dl.acm.org/citation.cfm?id=567003.567031

[24] M. Jun, S. Yoo, and E.-Y. Chung, “Mixed integer linear
programming-based optimal topology synthesis of cascaded
crossbar switches,” in Proceedings of the 2008 Asia and
South Pacific Design Automation Conference, ser. ASP-
DAC ’08. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2008, pp. 583–588. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1356802.1356945

[25] Z. Handani, H. Hashim, S. Alwi, and Z. Manan, “A mixed
integer linear programming (milp) model for optimal design
of water network,” in Modeling, Simulation and Applied
Optimization (ICMSAO), 2011 4th International Conference
on, april 2011, pp. 1 –6.

[26] F. S. Hillier and G. J. Lieberman, Introduction to operations
research. McGraw-Hill Inc., 2001.

[27] D. Sheridan, “The optimality of a fast cnf conversion and its
use with sat,” in SAT, 2004.

	Introduction
	Our Main Contributions
	Paper Outline

	Basic Definitions
	Predicates
	Mixed Integer Linear Programming

	Discrete Time Linear Hybrid Systems
	From Linear to Conjunctive Predicates
	Guarded Predicates
	From Guarded Predicates to Conjunctive Predicates

	Computing Variable Bounds
	Guarded Predicates as Modeling Language
	Experimental Results on a Case Study
	Multi-Input Buck DC-DC Converter
	Multi-Input Buck as a Predicate
	Multi-Input Buck as a Guarded Predicate
	Evaluation

	Related Work
	Conclusions and Future Work
	ACRONYMS
	References

