
6

Model Based Synthesis of Control Software from System Level Formal
Specifications

FEDERICO MARI, IGOR MELATTI, IVANO SALVO, and ENRICO TRONCI,

Sapienza University of Rome

Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose
controller consists of control software running on a microcontroller device. This motivates investigation on
Formal Model Based Design approaches for automatic synthesis of embedded systems control software. We
present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time
Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of
bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and
liveness requirements for the closed loop system) returns correct-by-construction control software that has a
Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. We
show feasibility of our approach by presenting experimental results on using it to synthesize control software
for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.

Categories and Subject Descriptors: D.2.2 [Software]: Design Tools and Techniques—Computer Aided
Software Engineering; D.2.4 [Software]: Software/Program Verification—Model Checking, Formal Methods

General Terms: Verification

Additional Key Words and Phrases: Hybrid Systems, Correct-By-Construction Control Software Synthesis,
Model-Based Design of Control Software

1. INTRODUCTION

Many Embedded Systems are indeed Software Based Control Systems (SBCS). An SBCS
consists of two main subsystems: the controller and the plant. Typically, the plant is a
physical system consisting, for example, of mechanical or electrical devices whereas the
controller consists of control software running on a microcontroller (see Fig. 2). In an endless
loop, the controller reads sensor outputs from the plant and sends commands to plant
actuators in order to guarantee that the closed loop system (that is, the system consisting
of both plant and controller) meets given safety and liveness specifications (System Level
Formal Specifications). Missing such goals can cause failures or damages to the plant, thus
making an SBCS a hard real-time system.

Software generation from models and formal specifications forms the core of Model Based
Design of embedded software [Henzinger and Sifakis 2006]. This approach is particularly
interesting for SBCSs since in such a case system level (formal) specifications are much
easier to define than the control software behavior itself.

Fig. 1 shows the typical control loop skeleton for an SBCS. Measures from plant sensors go
through an Analog-to-Digital (AD) conversion (quantization) before being processed (line
2) and commands from the control software go through a Digital-to-Analog (DA) conver-
sion before being sent to plant actuators (line 8). Basically, the control software design
problem for SBCSs consists in designing software implementing functions Control_Law and
Controllable_Region computing, respectively, the command to be sent to the plant (line
7) and the set of states on which the Control_Law function works correctly (Fault Detection
in line 3). Fig. 2 summarizes the complete closed loop system forming an SBCS.

Authors’ address: Dipartimento di Informatica, Sapienza Università di Roma, Via Salaria 113, 00198 Roma,
Italy.
c© ACM. (2014). This is the authors’ version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in ACM Transactions on Software
Engineering and Methodology, Vol. 23, No. 1, Article 6, ISSN 1049-331X, Pub. date: February 2014.
DOI 10.1145/2559934 http://doi.acm.org/10.1145/2559934

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:2 Federico Mari et al.

1. Every T seconds (sampling time) do
2. Read AD conversion x̂ of plant sensor outputs x
3. If (x̂ is not in the Controllable_Region)
4. Then // Exception (Fault Detected):
5. Start Fault Isolation and Recovery (FDIR)
6. Else // Nominal case:
7. Compute (Control_Law) command û from x̂
8. Send DA conversion u of û to plant actuators

Fig. 1. A typical control loop skeleton.

microcontroller

AD DA Plant

Control

Software

Fig. 2. Software Based Control System.

1.1. The Separation-of-Concerns Approach

For SBCS system level specifications are typically given with respect to the desired
behavior of the closed loop system. The control software (that is, Control_Law and
Controllable_Region) is designed using a separation-of-concerns approach. That is, Con-
trol Engineering techniques (e.g., see [Brogan 1991]) are used to design, from the closed loop
system level specifications, functional specifications (control law) for the control software
whereas Software Engineering techniques are used to design control software implementing
the given functional specifications.

Such a separation-of-concerns approach has several drawbacks.
First, usually control engineering techniques do not yield a formally verified speci-

fication for the control law or controllable region when quantization is taken into ac-
count. This is particularly the case when the plant has to be modelled as a Hybrid Sys-
tem [Alur and Madhusudan 2004; Alur et al. 1995; Henzinger et al. 1997; Alur et al. 1996]
(that is a system with continuous as well as discrete state changes). As a result, even if the
control software meets its functional specifications there is no formal guarantee that system
level specifications are met since quantization effects are not formally accounted for.

Second, issues concerning computational resources, such as control software
Worst Case Execution Time (WCET), can only be considered very late in the SBCS de-
sign activity, namely once the software has been designed. As a result, since the SBCS is
a hard real-time system (Fig. 2), the control software may have a WCET greater than the
sampling time (line 1 in Fig. 1). This invalidates the schedulability analysis (typically car-
ried out before the control software is completed) and may trigger redesign of the software
or even of its functional specifications (in order to simplify its design).

Last, but not least, the classical separation-of-concerns approach does not effectively
support design space exploration for the control software. In fact, although in general there
will be many functional specifications for the control software that will allow meeting the
given system level specifications, the software engineer only gets one to play with. This
overconstrains a priori the design space for the control software implementation preventing,
for example, effective performance trading (e.g., between number of bits in AD conversion,
WCET, RAM usage, CPU power consumption, etc.).

We note that the above considerations also apply to the typical situation where Con-
trol Engineering techniques are used to design a control law and then tools like Berke-
ley’s Ptolemy [Eker et al. 2003], Esterel’s SCADE [SCADE Web Page 2012] or Math-
Works Simulink [Simulink Web Page 2012] are used to generate the control software. Even
when the control law is automatically generated and proved correct (for example, as in
[Mazo et al. 2010]) such an approach does not yield any formal guarantee about the soft-
ware correctness since quantization of the state measurements is not taken into account in
the computation of the control law. Thus such an approach cannot answer questions like: 1)
Can 8 bit AD be used or instead we need, say, 12 bit AD? 2) Will the control software code
run fast enough on a, say, 1 MIPS microcontroller (that is, is the control software WCET
less than the sampling time)? 3) What is the controllable region?

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:3

The previous considerations motivate research on Software Engineering methods and tools
focusing on control software synthesis (rather than on control law synthesis as in Control
Engineering). The objective is that from the plant model (as a hybrid system), from formal
specifications for the closed loop system behavior (System Level Formal Specifications) and
from Implementation Specifications (that is, number of bits used in the quantization process)
such methods and tools can generate correct-by-construction control software satisfying the
given specifications. This is the focus of the present paper.

For a more in-depth discussion of the literature related to the present paper, we refer the
reader to Sect. 9 and Tab. VI.

1.2. Our Main Contributions

We model the controlled system (plant) as a Discrete Time Linear Hybrid System (DTLHS)
(see Sect. 3), that is a discrete time hybrid system whose dynamics is defined as a linear
predicate (i.e., a boolean combination of linear constraints, see Sect. 2) on its variables.
We model system level safety as well as liveness specifications as sets of states defined, in
turn, as linear predicates. In our setting, as always in control problems, liveness constraints
define the set of states that any evolution of the closed loop system should eventually
reach (goal states). Using an approach similar to the one in [Henzinger and Kopke 1997;
Henzinger et al. 1998; Agrawal et al. 2006], in [Mari et al. 2012c] we prove that both exis-
tence of a controller for a DTLHS and existence of a quantized controller for a DTLHS are
undecidable problems. Accordingly, we can only hope for semi- or incomplete algorithms.

We present an algorithm computing a sufficient condition and a necessary condition for
existence of a solution to our control software synthesis problem (see Sects. 4 and 5). Given
a DTLHS model H for the plant, a quantization schema (i.e. how many bits we use for AD
conversion) and system level formal specifications, our algorithm (see Sect. 6) will return
1 if they are able to decide if a solution exists or not, and 0 otherwise (unavoidable case
since our problem is undecidable). Furthermore, when our sufficient condition is satisfied,
we return a pair of C functions (see Sect. 7) Control_Law, Controllable_Region such that:
function Control_Law implements a Quantized Feedback Controller (QFC) for H meeting
the given system level formal specifications and function Controllable_Region computes
the set of states on which Control_Law is guaranteed to work correctly (controllable region).
While WCET analysis is actually performed after control software generation, our contri-
bution is to supply both functions with a Worst Case Execution Time (WCET) guaranteed
to be linear in the number of bits of the state quantization schema (see Sect. 7.1). Further-
more, function Control_Law is robust, that is, it meets the given closed loop requirements
notwithstanding (nondeterministic) disturbances such as variations in the plant parameters.

We implemented our algorithm on top of the CUDD package and of
the GLPK Mixed Integer Linear Programming (MILP) solver, thus obtain-
ing tool Quantized feedback Kontrol Synthesizer (QKS) (publicly available at
[QKS Web Page 2011]). This allows us to present experimental results on using QKS
to synthesize robust control software for a widely used mixed-mode analog circuit: the buck
DC-DC converter (e.g. see [So et al. 1996]). This is an interesting and challenging example
(e.g., see [Dominguez-Garcia and Krein 2008], [Yousefzadeh et al. 2008]) for automatic
synthesis of correct-by-construction control software from system level formal specifications.
Moreover, in order to show effectiveness of our approach, we also present experimental
results on using QKS for the inverted pendulum [Kreisselmeier and Birkhölzer 1994].

Our experimental results address both computational feasibility and closed loop perfor-
mances. As for computational feasibility, we show that within about 40 hours of CPU time
and within 100MB of RAM we can synthesize control software for a 10-bit quantized buck
DC-DC converter. As for closed loop performances, our synthesized control software set-up
time (i.e., the time needed to reach the steady state) and ripple (i.e., the wideness of the
oscillations around the steady state once this has been reached) compares well with those

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:4 Federico Mari et al.

available from the Power Electronics community [So et al. 1996; Yousefzadeh et al. 2008]
and from commercial products [Texas Instruments 2001].

2. BACKGROUND

We denote with [n] an initial segment {1, . . . , n} of the natural numbers. We denote with
X = [x1, . . . , xn] a finite sequence (list) of variables. By abuse of language we may regard
sequences as sets and we use ∪ to denote list concatenation. Each variable x ranges on a
known (bounded or unbounded) interval Dx either of the reals or of the integers (discrete
variables). We denote with DX the set

∏

x∈X Dx. To clarify that a variable x is continuous
(i.e. real valued) we may write xr. Similarly, to clarify that a variable x is discrete (i.e.
integer valued) we may write xd. Boolean variables are discrete variables ranging on the
set B = {0, 1}. We may write xb to denote a boolean variable. Analogously Xr (Xd, Xb)
denotes the sequence of real (integer, boolean) variables in X . Unless otherwise stated, we

suppose DXr = R
|Xr| and DXd = Z

|Xd|. Finally, if x is a boolean variable we write x̄ for
(1− x).

2.1. Predicates

A linear expression L(X) over a list of variables X is a linear combination of variables in X
with rational coefficients,

∑

xi∈X aixi. A linear constraint over X (or simply a constraint)

is an expression of the form L(X) ≤ b, where L(X) is a linear expression over X and b is a
rational constant. In the following, we also write L(X) ≥ b for −L(X) ≤ −b.

Predicates are inductively defined as follows. A constraint C(X) over a list of variables X
is a predicate over X . If A(X) and B(X) are predicates over X , then (A(X) ∧B(X)) and
(A(X) ∨ B(X)) are predicates over X. Parentheses may be omitted, assuming usual asso-
ciativity and precedence rules of logical operators. A conjunctive predicate is a conjunction
of constraints. For conjunctive predicates we will also write: L(X) = b for ((L(X) ≤ b) ∧
(L(X) ≥ b)) and a ≤ x ≤ b for x ≥ a ∧ x ≤ b, where x ∈ X .

A valuation over a list of variables X is a function v that maps each variable x ∈ X to
a value v(x) ∈ Dx. Given a valuation v, we denote with X∗ ∈ DX the sequence of values
[v(x1), . . . , v(xn)]. By abuse of language, we call valuation also the sequence of values X∗.
A satisfying assignment to a predicate P over X is a valuation X∗ such that P (X∗) holds.
If a satisfying assignment to a predicate P over X exists, we say that P is feasible. Abusing
notation, we may denote with P the set of satisfying assignments to the predicate P (X).
Two predicates P and Q over X are equivalent, denoted by P ≡ Q, if they have the same
set of satisfying assignments.

A variable x ∈ X is said to be bounded in P if there exist a, b ∈ Dx such that P (X)
implies a ≤ x ≤ b. A predicate P is bounded if all its variables are bounded.

Given a constraint C(X) and a fresh boolean variable (guard) y 6∈ X , the guarded con-
straint y → C(X) (if y then C(X)) denotes the predicate ((y = 0) ∨ C(X)). Similarly, we
use ȳ → C(X) (if not y then C(X)) to denote the predicate ((y = 1) ∨ C(X)). A guarded
predicate is a conjunction of either constraints or guarded constraints. It is possible to show
that, if a guarded predicate P is bounded, then P can be transformed into a (bounded)
conjunctive predicate, see [Mari et al. 2012b].

2.2. Mixed Integer Linear Programming

A Mixed Integer Linear Programming (MILP) problem with decision variables X is a tuple
(max, J(X), A(X)) where: X is a list of variables, J(X) (objective function) is a linear
expression on X , and A(X) (constraints) is a conjunctive predicate on X . A solution to
(max, J(X), A(X)) is a valuation X∗ such that A(X∗) and ∀Z (A(Z) → (J(Z) ≤ J(X∗))).
J(X∗) is the optimal value of the MILP problem. A feasibility problem is a MILP

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:5

problem of the form (max, 0, A(X)). We write also A(X) for (max, 0, A(X)). We write
(min, J(X), A(X)) for (max,−J(X), A(X)).

In algorithm outlines, MILP solver invocations are denoted by function feasible(A(X))
that returns True if A(X) is feasible and False otherwise, and function optimalValue(max,
J(X), A(X)) that returns either the optimal value of the MILP problem (max, J(X), A(X))
or +∞ if such MILP problem is unbounded or unfeasible.

2.3. Labeled Transition Systems

A Labeled Transition System (LTS) is a tuple S = (S,A, T) where S is a (possibly infinite)
set of states, A is a (possibly infinite) set of actions, and T : S × A × S → B is the transition
relation of S. We say that T (and S) is deterministic if T (s, a, s′)∧T (s, a, s′′) implies s′ = s′′,
and nondeterministic otherwise. Let s ∈ S and a ∈ A. We denote with Adm(S, s) the set of
actions admissible in s, that is Adm(S, s) = {a ∈ A | ∃s′ : T (s, a, s′)} and with Img(S, s, a)
the set of next states from s via a, that is Img(S, s, a) = {s′ ∈ S | T (s, a, s′)}. We call
transition a triple (s, a, s′) ∈ S × A × S, and self loop a transition (s, a, s). A transition
(s, a, s′) [self loop (s, a, s)] is a transition [self loop] of S iff T (s, a, s′) [T (s, a, s)]. A run or
path for an LTS S is a sequence π = s0, a0, s1, a1, s2, a2, . . . of states st and actions at such
that ∀t ≥ 0 T (st, at, st+1). The length |π| of a finite run π is the number of actions in π.
We denote with π(S)(t) the (t + 1)-th state element of π, and with π(A)(t) the (t + 1)-th
action element of π. That is π(S)(t) = st, and π(A)(t) = at.

Given two LTSs S1 = (S, A, T1) and S2 = (S, A, T2), we say that S1 refines S2 (denoted
by S1 ⊑ S2) iff T1(s, a, s

′) implies T2(s, a, s
′) for each state s, s′ ∈ S and action a ∈ A. The

refinement relation is a partial order on LTSs.

3. DISCRETE TIME LINEAR HYBRID SYSTEMS

In this section we introduce our class of Discrete Time Linear Hybrid System (DTLHS),
together with the DTLHS representing the buck DC-DC converter on which our experiments
will focus.

Definition 3.1 (DTLHS). A Discrete Time Linear Hybrid System is a tuple H = (X, U,
Y, N) where:

—X = Xr ∪Xd is a finite sequence of real (Xr) and discrete (Xd) present state variables.
We denote with X ′ the sequence of next state variables obtained by decorating with ′ all
variables in X .

—U = U r ∪ Ud is a finite sequence of input variables.
— Y = Y r ∪ Y d is a finite sequence of auxiliary variables. Auxiliary variables are typically

used to model modes (e.g., from switching elements such as diodes) or “local” variables.
—N(X,U, Y,X ′) is a conjunctive predicate over X ∪ U ∪ Y ∪ X ′ defining the transition

relation (next state) of the system. N is deterministic if N(x, u, y1, x
′) ∧ N(x, u, y2, x

′′)
implies x′ = x′′, and nondeterministic otherwise.

A DTLHS is bounded if predicate N is bounded. A DTLHS is deterministic if N is deter-
ministic.

Since any bounded guarded predicate can be transformed into a conjunctive predicate
(see Sect. 2.1), for the sake of readability we will use bounded guarded predicates to describe
the transition relation of bounded DTLHSs. To this aim, we will also clarify which variables
are boolean, and thus may be used as guards in guarded constraints.

Example 3.2. Let x be a continuous variable, u be a boolean variable, and N(x, u, x′) ≡
[u → x′ = αx] ∧ [u → x′ = βx] ∧ −4 ≤ x ≤ 4 be a guarded predicate with α = 1

2 and

β = 3
2 . Then H = ({x}, {u},∅, N) is a bounded DTLHS. Note that H is deterministic.

Adding nondeterminism to H allows us to address the problem of (bounded) variations

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:6 Federico Mari et al.

in the DTLHS parameters. For example, variations in the parameter α can be modelled
with a tolerance ρ ∈ [0, 1] for α. This replaces N with: N (ρ) ≡ [u → x′ ≤ (1 + ρ)αx]
∧ [u → x′ ≥ (1 − ρ)αx] ∧ [u → x′ = βx]. We have that H(ρ) = ({x}, {u},∅, N (ρ)), for
ρ ∈ (0, 1], is a nondeterministic DTLHS. Note that, as expected, H(0) = H.

In the following definition, we give the semantics of DTLHSs in terms of LTSs.

Definition 3.3 (DTLHS dynamics). Let H = (X , U , Y , N) be a DTLHS. The dynamics

of H is defined by the Labeled Transition System LTS(H) = (DX , DU , Ñ) where: Ñ :

DX × DU × DX → B is a function s.t. Ñ(x, u, x′) ≡ ∃y ∈ DY : N(x, u, y, x′). A state x
for H is a state x for LTS(H) and a run (or path) for H is a run for LTS(H) (Sect. 2.3).

Example 3.4. Let H be the DTLHS of Ex. 3.2. Then a sequence π is a run for H iff
state π(S)(i+ 1) is obtained by multiplying π(S)(i) by 3

2 when π(A)(i) = 1, and by 1
2 when

π(A)(i) = 0.

3.1. Buck DC-DC Converter as a DTLHS

The buck DC-DC converter (Fig. 3) is a mixed-mode analog circuit converting the DC in-
put voltage (Vi in Fig. 3) to a desired DC output voltage (vO in Fig. 3). As an example,
buck DC-DC converters are used off-chip to scale down the typical laptop battery volt-
age (12-24) to the just few volts needed by the laptop processor (e.g. [So et al. 1996]) as
well as on-chip to support Dynamic Voltage and Frequency Scaling (DVFS) in multicore
processors (e.g. [Kim et al. 2007; Schrom et al. 2004]). Because of its widespread use, con-
trol schemas for buck DC-DC converters have been widely studied (e.g. see [Kim et al. 2007;
Schrom et al. 2004; So et al. 1996; Yousefzadeh et al. 2008]). The typical software based ap-
proach (e.g. see [So et al. 1996]) is to control the switch u in Fig. 3 (typically implemented
with a MOSFET) with a microcontroller.

R
C

rC

q

iD

L

u
+vu

+vD iC

+vO

Vi

iL
rL

iu +vC

Fig. 3. Buck DC-DC converter.

Designing the software to run on the microcontroller to properly actuate the switch is
the control software design problem for the buck DC-DC converter in our context.

The circuit in Fig. 3 can be modeled as a DTLHS H = (X , U , Y , N) in the following
way. As for the sets of variables, we have X = Xr = [iL, vO], U = U b = [u], Y = Y r ∪ Y b

with Y r = [iu, vu, iD, vD] and Y b = [q]. As for N , it is given by the conjunction of the
following (guarded) constraints:

iL
′ = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (1)

vO
′ = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (2)

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:7

q → vD = 0 (3)

q → iD ≥ 0 (4)

u → vu = 0 (5)

iD = iL − iu (6)

q̄ → vD ≤ 0 (7)

q̄ → vD = Roff iD (8)

ū → vu = Roff iu (9)

vD = vu − Vi (10)

where the coefficients ai,j depend on the circuit parameters R, rL, rC , L and C in the

following way: a1,1 = − rL
L

, a1,2 = − 1
L
, a1,3 = − 1

L
, a2,1 = R

rc+R
[− rcrL

L
+ 1

C
], a2,2 =

−1
rc+R

[rcR
L

+ 1
C
], a2,3 = − 1

L
rcR
rc+R

.

4. QUANTIZED FEEDBACK CONTROL

In this section, we formally define the Quantized Feedback Control Problem for DTLHSs
(Sect. 4.3). To this end, first we give the definition of Feedback Control Problem for LTSs
(Sect. 4.1), and then for DTLHSs (Sect. 4.2). Finally, we show that our definitions are well
founded (Sect. 4.4).

4.1. Feedback Control Problem for LTSs

We begin by extending to possibly infinite LTSs the definitions in [Tronci 1998;
Cimatti et al. 1998] for finite LTSs. In what follows, let S = (S,A, T) be an LTS, and
I,G ⊆ S be, respectively, the initial and goal regions.

Definition 4.1 (LTS control problem). A controller for an LTS S is a function K :
S × A → B such that ∀s ∈ S, ∀a ∈ A, if K(s, a) then a ∈ Adm(S, s). We denote
with Dom(K) the set of states for which a control action is defined. Formally, Dom(K)
= {s ∈ S | ∃a : K(s, a)}. S(K) denotes the closed loop system, that is the LTS (S,A, T (K)),
where T (K)(s, a, s′) = T (s, a, s′) ∧ K(s, a). A control law for a controller K is a (partial)
function k : S → A s.t. for all s ∈ Dom(K) we have that K(s, k(s)) holds. By abuse of
language we say that a controller is a control law if for all s ∈ S, a, b ∈ A it holds that
(K(x, a) ∧K(x, b))→ (a = b). An LTS control problem is a triple (S, I, G).

Example 4.2. Let S = {−1, 0, 1} and A = {0, 1}. Let S0 be the LTS (S,A, T0), where
the transition relation T0 consists of the continuous arrows in Fig. 4. A function K is a
controller for S0 iff (s 6= 0) → (K(s, 1) = 0). As an example, we have that K defined as
K(s, a) = ((s 6= 0)→ (a 6= 1)) is a controller but not a control law, and that k(s) = 0 is a
control law for K (note that K(s, a) = (a = 0) is a control law).

Def. 4.1 also introduces the formal definition of control law, as our model of control soft-
ware, i.e. of how function Control_Law in Fig. 1 must behave. Namely, while a controller
may enable many actions in a given state, a control law (i.e. the final software implementa-
tion) must provide only one action. Note that the notion of controller is important because
it contains all possible control laws.

In the following we give formal definitions of strong and weak solutions to a control
problem for an LTS.

We call a path π fullpath if either it is infinite or its last state π(S)(|π|) has no successors
(i.e. Adm(S, π(S)(|π|)) = ∅). We denote with Path(S, s, a) the set of fullpaths of S starting
in state s with action a, i.e. the set of fullpaths π such that π(S)(0) = s and π(A)(0) = a.

Given a path π in S, we define the measure J(S, G, π) on paths as the distance
of π(S)(0) to the goal on π. That is, if there exists n > 0 s.t. π(S)(n) ∈ G, then
J(S, G, π) = min{n | n > 0 ∧ π(S)(n) ∈ G}. Otherwise, J(S, G, π) = +∞. We require
n > 0 since our systems are nonterminating and each controllable state (including a goal
state) must have a path of positive length to a goal state. Taking sup∅ = +∞ and
inf ∅ = −∞, the worst case distance (pessimistic view) of a state s from the goal re-
gion G is Jstrong(S, G, s) = sup{J (S)(S, G, s, a) | a ∈ Adm(S, s)}, where: J (S)(S, G, s, a) =

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:8 Federico Mari et al.

ONMLHIJK−1

1

PP

0

�� 0 ++ONMLHIJKGFED@ABC0
1

kk

1 ++

0

PP

1

��
ONMLHIJK1

1

PP

0

��

0
kk

Fig. 4. LTSs S0 (continuous arrows) and S1 (all arrows). Double circle represents the goal state.

sup{J(S, G, π) | π ∈ Path(S, s, a)}. The best case distance (optimistic view) of a state s
from the goal region G is Jweak(S, G, s) = sup{J (W)(S, G, s, a) | a ∈ Adm(S, s)}, where:
J (W)(S, G, s, a) = inf{J(S, G, π) | π ∈ Path(S, s, a)}.

Definition 4.3 (Solution to LTS control problem). Let P = (S, I, G) be an LTS control
problem and K be a controller for S such that I ⊆ Dom(K). K is a strong [weak] solution
to P if for all s ∈ Dom(K), Jstrong(S

(K), G, s) [Jweak(S
(K), G, s)] is finite. An optimal

strong [weak] solution to P is a strong [weak] solution K∗ to P such that for all strong

[weak] solutions K to P , for all s ∈ S we have that Jstrong(S
(K∗), G, s) ≤ Jstrong(S

(K), G, s)

[Jweak(S
(K∗), G, s) ≤ Jweak(S

(K), G, s)].

Intuitively, a strong solution K takes a pessimistic view by requiring that for each initial
state, all runs in the closed loop system S(K) reach the goal, no matter nondeterministic out-
comes. A weak solution K takes an optimistic view about nondeterminism: it just asks that
for each action a enabled in a given state s, there exists at least a path in Path(S(K), s, a)
leading to the goal. Unless otherwise stated, we say solution for strong solution.

Finally, we define the most general optimal strong [weak] solution to P (strong [weak]
mgo in the following) as the unique strong [weak] optimal solution to P enabling as many
actions as possible (i.e., the most liberal one). In Sect. 4.4 we show that the definition of
mgo is well posed.

Example 4.4. Let S0,S1 be the LTSs in Fig. 4 (see also Ex. 4.2). Let P0 = (S0, I, G) and
P1 = (S1, I, G) be two control problems, where I = {−1, 0, 1} and G = {0}. The controller
K(s, a) ≡ [s 6= 0 → a = 0] is a strong solution to the control problem P0. Observe that K

is not optimal. Indeed, the controller K̃(s, a) ≡ a = 0 is such that Jstrong(S
(K̃)
0 , G, 0) = 1 <

2 = Jstrong(S
(K)
0 , G, 0). The control problem P1 has no strong solution. As a matter of fact,

to drive the system to the goal region {0}, any solution K must enable action 0 in states

−1 and 1: in such a case, however, we have that Jstrong(S
(K)
1 , Ĝ, 1) = Jstrong(S

(K)
1 , Ĝ,−1)

= ∞ because of the self loops (1, 0, 1) and (−1, 0,−1) of T1. Finally, note that K is the

weak mgo for P1 and K̃ is the strong mgo for P0.

Remark 4.5. Note that if K is a strong solution to (S, I, G) and G ⊆ I (as is usually the
case in control problems) then S(K) is stable from I to G, that is each run in S(K) starting
from a state in I leads to a state in G. In fact, from Def. 4.3 we have that each state s ∈ I
reaches a state s′ ∈ G in a finite number of steps. Moreover, since G ⊆ I, we have that any
state s ∈ G reaches a state s′ ∈ G in a finite number of steps. Thus, any path starting in I
in the closed loop system S(K) touches G an infinite number of times (liveness).

4.2. Feedback Control Problem for DTLHSs

A control problem for a DTLHS H is the LTS control problem induced by the dynamics of
H. For DTLHSs, we only consider control problems where I and G can be represented as
predicates over present state variables of H.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:9

Definition 4.6 (DTLHS control problem). Given a DTLHS H = (X,U, Y,N) and predi-
cates I and G over X , the DTLHS (feedback) control problem (H, I, G) is the LTS control
problem (LTS(H), I, G). Thus, a controller K : DX × DU → B is a strong [weak] solution
to (H, I, G) iff it is a strong [weak] solution to (LTS(H), I, G).

For DTLHS control problems, usually robust controllers are desired. That is, controllers
that, notwithstanding nondeterminism in the plant (e.g. due to parameter variations, see
Ex. 3.2), drive the plant state to the goal region. For this reason we focus on strong solutions.

Observe that the feedback controller for a DTLHS will only measure present state vari-
ables (e.g., output voltage and inductor current in Sect. 3.1) and will not measure auxiliary
variables (e.g. diode state in Sect. 3.1).

Example 4.7. The typical goal of a controller for the buck DC-DC converter in Sect. 3.1
is keeping the output voltage vO close enough to a given reference value Vref . This leads to
the DTLHS control problem P = (H, I, G) where H is defined in Sect. 3.1, I ≡ (|iL| ≤ 2)
∧ (0 ≤ vO ≤ 6.5), G ≡ (|vO − Vref | ≤ θ) ∧ (|iL| ≤ 2), and θ = 0.01 is the desired buck
precision.

4.3. Quantized Feedback Control Problem

Software running on a microcontroller (control software in the following) cannot han-
dle real values. For this reason real valued state feedback from plant sensors under-
goes an Analog-to-Digital (AD) conversion before being sent to the control software.
This process is called quantization (e.g. see [Fu and Xie 2005] and citations thereof). A
Digital-to-Analog (DA) conversion is needed to transform the control software digital out-
put into real values to be sent to plant actuators. In the following, we formally define
quantized solutions to a DTLHS feedback control problem.

Definition 4.8 (Quantization function). A quantization function γ for a real interval

I = [a, b] is a non-decreasing function γ : [a, b] → Î, where Î is a bounded integer interval
[γ(a), γ(b)] ⊆ Z. The quantization step of γ, denoted by ‖γ‖, is defined as sup{ |w−z| | w, z ∈
I ∧ γ(w) = γ(z)}.

For ease of notation, we extend quantizations to integer intervals, by stipulating that in
such a case the quantization function is the identity function (i.e. γ(x) = x). Note that,
with this convention, the quantization step on an integer interval is always 0.

Definition 4.9 (Quantization for DTLHSs). Let H = (X,U, Y,N) be a DTLHS, and let
W = X ∪ U . A quantization Q for H is a pair (A,Γ), where:

—A is a predicate of form ∧w∈W (aw ≤ w ≤ bw) with aw, bw ∈ Dw. For each w ∈ W , we
define Aw = {v ∈ Dw | aw ≤ v ≤ bw} as the admissible region for variable w. Moreover,
we define AV =

∏

v∈V Av, with V ⊆W , as the admissible region for variables in V .
— Γ is a set of maps Γ = {γw | w ∈W and γw is a quantization function for Aw}.

Let V = [w1, . . . , wk] and v = [v1, . . . , vk] ∈ AV , where V ⊆ W . We write Γ(v) (or v̂) for
the tuple [γw1

(v1), . . . , γwk
(vk)] and Γ−1(v̂) for the set {v ∈ AV | Γ(v) = v̂}. Finally, the

quantization step ‖Γ‖ for Γ is defined as sup{ ‖γ‖ | γ ∈ Γ}.

For ease of notation, in the following we will also consider quantizations for primed
variables x′ ∈ X ′, by stipulating that γx′ ≡ γx.

Example 4.10. Let H be the DTLHS described in Ex. 3.2. Let us consider the quan-
tization Q = (A,Γ), where A ≡ −2.5 ≤ x ≤ 2.5 ∧ 0 ≤ u ≤ 1. A defines the admissi-
ble region Ax = AX = [−2.5, 2.5]. Let Γ = {γx, γu}, with γx(x) = round(x/2) (where
round(x) = ⌊x⌋ + ⌊2(x − ⌊x⌋)⌋ is the usual rounding function) and γu(u) = u. Note that

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:10 Federico Mari et al.

γx(x) = −1 for all x ∈ [−2.5,−1], γx(x) = 0 for all x ∈ (−1, 1) and γx(x) = 1 for all
x ∈ [1, 2.5]. Thus, we have that Γ(Ax) = {−1, 0, 1}, Γ(Au) = {0, 1} and ‖Γ‖ = 1.

Quantization, i.e. representing reals with integers, unavoidably introduces errors in read-
ing real-valued plant sensors in the control software. We address this problem in the fol-
lowing way. First, we introduce the definition of ε-solution. Essentially, we require that the
controller drives the plant “near enough” (up to a given error ε) to the goal region G.

Definition 4.11 (ε-relaxation of a set). Let ε ≥ 0 be a real number and W ⊆ R
n × Z

m.
The ε-relaxation of W is the set (ball of radius ε) Bε(W) = {(z1, . . . zn, q1, . . . qm) | ∃(x1,
. . ., xn, q1, . . . , qm) : (x1, . . ., xn, q1, . . ., qm) ∈W and ∀i ∈ {1, . . . n} |zi − xi| ≤ ε}.

Definition 4.12 (ε-solution to DTLHS control problem). Let P = (H, I, G) be a DTLHS
control problem and let ε > 0 be a real number. A strong [weak] ε-solution to P is a strong
[weak] solution to the LTS control problem (LTS(H), I,Bε(G)).

Example 4.13. Let H be the DTLHS described in Ex. 3.2. We consider the control prob-
lem defined by the initial region I = [−2.5, 2.5] and the goal region G = {0} (represented by
the predicate x = 0). The DTLHS control problem P = (H, I, G) has no solution (because of
the Zeno phenomenon), but for all ε > 0 it has the ε-solution K such that ∀x ∈ I. K(x, 0).

Second, we introduce the definition of quantized solution to a DTLHS control problem
for a given quantization Q = (A,Γ). Essentially, a quantized solution models the fact that
in an SBCS control decisions are taken by the control software by just looking at quantized
state values. Despite this, a quantized solution guarantees that each DTLHS initial state
reaches a DTLHS goal state (up to an error at most ‖Γ‖).

Definition 4.14 (Quantized Feedback Control solution to DTLHS control problem). Let
H = (X,U, Y,N) be a DTLHS, Q = (A,Γ) be a quantization for H and P = (H, I, G)
be a DTLHS control problem. A Q Quantized Feedback Control (QFC) strong [weak] solu-
tion to P is a strong [weak] ‖Γ‖-solution K : DX ×DU → B to P such that K(x, u) = 0 if

(x, u) /∈ AX ×AU , and otherwise K(x, u) = K̂(Γ(x),Γ(u)) where K̂ : Γ(AX)×Γ(AU) → B.

Note that a Q QFC solution to a DTLHS control problem does not work outside the
admissible region defined by Q. This models the fact that controllers for real-world systems
must maintain the plant inside given bounds (such requirements are part of the safety
specifications). In the following, we will define Q QFC solutions by only specifying their
behavior inside the admissible region.

Example 4.15. Let P be the DTLHS control problem defined in Ex. 4.13 and Q = (A,Γ)

be the quantization defined in Ex. 4.10. Let K̂ be defined by K̂(x̂, û) ≡ [x̂ 6= 0 → û = 0].

For any ε > 0, the quantized controller K(x, u) = K̂(Γ(x),Γ(u)) is an ε-solution to P , and
hence it is a Q QFC solution.

Along the same lines of similar undecidability proofs [Henzinger et al. 1998;
Agrawal et al. 2006], it is possible to show that existence of a Q QFC solution to a
DTLHS control problem (DTLHS quantized control problem) is undecidable, as shown
in [Mari et al. 2012c].

Theorem 4.16. The DTLHS quantized control problem is undecidable.

4.4. Proof of Uniqueness of the Most General Optimal Controller

In this section, we prove properties on mgo (see Sect. 4.1). This section can be skipped at
a first reading. We begin by giving the formal definition of strong and weak mgo.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:11

Definition 4.17 (Most general optimal solution to control problem). The most general

optimal strong [weak] solution to P is an optimal strong [weak] solution K̃ to P such
that for all other optimal strong [weak] solutions K to P , for all s ∈ S, for all a ∈ A we

have that K(s, a) → K̃(s, a).

Proposition 4.18. An LTS control problem (S,∅, G) has always an unique strong mgo
K∗. Moreover, for all I ⊆ S, we have:

— if I ⊆ Dom(K∗), then K∗ is the unique strong mgo for the control problem (S, I, G);
— if I 6⊆ Dom(K∗), then the control problem (S, I, G) has no strong solution.

Proof. Let S = (S,A, T) be an LTS, and let (S, I, G) be an LTS control problem. We
define the sequences of sets Dn and Fn as follows:

—D0 = ∅

—F1 = {s ∈ S | ∃a ∈ A : a ∈ Adm(S, s) ∧ Img(S, s, a) ⊆ G}
—Fn+1 = {s ∈ S \Dn | ∃a ∈ A : a ∈ Adm(S, s) ∧ Img(S, s, a) ⊆ Dn}
—Dn+1 = Dn ∪ Fn+1

Intuitively, Dn is the set of states which can be driven inside G in at most n steps,
notwithstanding nondeterminism. Fn is the subset of Dn containing only those states for
which at least a path to G of length exactly n exists.

The following properties hold for Dn and Fn:

(1) If Fn = ∅ for some n ≥ 1, then for all m ≥ n, Fm = ∅. In fact, if Fn = ∅, then
Dn = Dn−1, and hence Fn+1 = Fn = ∅.

(2) If Dn+1 = Dn for some n ≥ 0, then for all m ≥ n, Dm = Dn. This immediately follows
from the previous point 1.

(3) Dn =
⋃

1≤j≤n Fj for n ≥ 1 (also for n ≥ 0 if we take the union of no sets to be ∅). We
prove this property by induction on n. As for the induction base, we have that D1 = F1.
As for the inductive step, Dn+1 = Dn ∪ Fn+1 =

⋃

1≤j≤n Fj ∪ Fn+1 =
⋃

1≤j≤n+1 Fj .

(4) Fi ∩ Fj = ∅ for all i 6= j. We have that if s ∈ Fn+1 then s 6∈ Dn. By previous point 3,
we have that s 6∈ Dn implies s 6∈ Fj for 1 ≤ j ≤ n. Hence, s ∈ Fn+1 implies that s 6∈ Fj

for all 1 ≤ j ≤ n. If by absurd a state s exists s.t. s ∈ Fi ∩ Fj for some i > j, then
s ∈ Fi would imply s /∈ Fj .

For all s ∈ S and a ∈ A, we define the controller K̃ : S × A → B as follows: K̃(s, a) ⇔
(∃n > 1 : s ∈ Fn ∧ a ∈ Adm(S, s) ∧ Img(S, s, a) ⊆ Dn−1) ∨ (s ∈ F1 ∧ a ∈ Adm(S, s) ∧
Img(S, s, a) ⊆ G).

Note that Dom(K̃) = D =
⊔

n∈N
Dn, i.e. the domain of K̃ is the least upper bound for

sets Dn (we are not supposing S to be finite, thus there may be a nonempty Dn for any
n ∈ N).

K̃ is a strong solution to (S,∅, G). To prove this, we show that, if t ∈ Fn, then

Jstrong(S
(K̃), G, t) = n (note that t ∈ Dom(K̃) implies t ∈ Fn for some n ≥ 1). In

fact, if t ∈ F1 then Jstrong(S
(K̃), G, t) = sup{J (S)(S(K̃), G, t, a) | a ∈ Adm(S(K̃), t)} =

sup{J (S)(S(K̃), G, t, a) | a is s.t. ∅ 6= Img(S, t, a) ⊆ G} = sup{sup{J(S(K̃), G, π) |

π ∈ Path(S(K̃), t, a)} | a is s.t. ∅ 6= Img(S, t, a) ⊆ G} = sup{J(S(K̃), G, π) | π ∈ {π ∈

Path(S(K̃), t, a) | a is s.t. ∅ 6= Img(S, t, a) ⊆ G}} = sup{min{n | n > 0 ∧ π(S)(n) ∈ G}

| π ∈ {π ∈ Path(S(K̃), t, a) | a is s.t. ∅ 6= Img(S, t, a) ⊆ G}}. Since for all π ∈ {π ∈

Path(S(K̃), t, a) | a is s.t. ∅ 6= Img(S, t, a) ⊆ G} we have that π(S)(1) ∈ G, we fi-

nally have that Jstrong(S
(K̃), G, t) = sup{1} = 1. On the other hand, if t ∈ Fn then

Jstrong(S
(K̃), G, t) = sup{min{n | n > 0 ∧ π(S)(n) ∈ G} | π ∈ {π ∈ Path(S(K̃), t, a) | a

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:12 Federico Mari et al.

is s.t. ∅ 6= Img(S, t, a) ⊆ Dn−1}} = sup{n1, . . . , nj, . . .}. We have that, for all j, nj ≤ n.

In fact, being t ∈ Fn and a s.t. ∅ 6= Img(S, t, a) ⊆ Dn−1, we have that π(S)(1) ∈ Dn−1

for all paths π ∈ Path(S(K̃), t, a). This implies that π(S)(1) ∈ Dn−2 ∨ π(S)(1) ∈ Fn−1. By
property 3 above, this implies that there exists 1 ≤ i ≤ n− 1 s.t. π(S)(1) ∈ Fi. By iterating
n− 1 times such a reasoning, we obtain that there exists 1 ≤ i ≤ n s.t. π(S)(i) ∈ G, which

implies nj ≤ n for all j. Moreover, there exists a path π ∈ Path(S(K̃), t, a) s.t. π(S)(n) ∈ G

and for all 0 < i < n we have that π(S)(i) /∈ G. Suppose by absurd that for all paths

π ∈ Path(S(K̃), t, a) we have that, if for all 0 < i < n π(S)(i) /∈ G, then π(S)(n) /∈ G. By
using an iterative reasoning as above, it is possible to show that this contradicts t being in
Fn and a being s.t. ∅ 6= Img(S, t, a) ⊆ Dn−1. Thus, being nj ≤ n for all j and existing a j

s.t. nj = n, we have that Jstrong(S
(K̃), G, t) = sup{n1, . . . , nj , . . .} = n.

Note that also the converse holds, i.e. Jstrong(S
(K̃), G, t) = n implies t ∈ Fn. This can be

proved analogously to the reasoning above.
To prove that K̃ is optimal, let us suppose that there exists another solution K and

that there exists a nonempty set Z of states, such that for all z ∈ Z, Jstrong(S
(K̃), G, z) >

Jstrong(S
(K), G, z). Let z0 ∈ Z be a state for which Jstrong(S

(K), G, z0) = n is minimal in
Z, and let a ∈ A be such that K(z0, a).

We have that n = 1 implies that Img(S, z0, a) ⊆ G. But in such a case, z0 would belong

to F1, and hence Jstrong(S
(K̃), G, z0) = 1 = Jstrong(S

(K), G, z0).

If n > 1, for all s ∈ Img(S, z0, a), we have that Jstrong(S
(K), G, s) ≤ n − 1. Since n is

the minimal distance for which Jstrong(S
(K̃), G, z) > Jstrong(S

(K), G, z) = n, we have that

for all s ∈ Img(S, z0, a), Jstrong(S
(K̃), G, s) ≤ Jstrong(S

(K), G, s) ≤ n− 1. This implies that,

Jstrong(S
(K̃), G, z0) ≤ n, which is absurd.

To prove that K̃ is the most general optimal solution, we proceed in a similar way. Let
us suppose that there exists another optimal solution K and that there exists a nonempty
set Z of states, such that for all z ∈ Z there exists an action a s.t. K(z, a) and ¬K̃(z, a)
holds. Let z0 ∈ Z be a state for which Jstrong(S

(K), G, z0) = n is minimal in Z.

If n = 1 we have that Img(S, z0, a) ⊆ G and thus z0 ∈ F1 and K̃(z0, a), which leads to a
contradiction.

If n > 1, by minimality of Jstrong(S
(K), G, z0) in Z we have that, for all s ∈ Img(S, z0, a),

K(s, u) implies K̃(s, u). This implies that Img(S, z0, a) ∈ Dn−1 and thus K̃(z0, a) holds.

5. CONTROL ABSTRACTION

A quantization naturally induces an abstraction of a DTLHS. Motivated by finding QFC
solutions in the abstract model, in this paper we introduce a novel notion of abstraction,
namely control abstraction. In what follows we introduce the notion of control abstraction.
In Sect. 5.1 we discuss on minimum and maximum control abstractions. In Sect. 5.2 we give
some properties on control abstractions.

Control abstraction (Def. 5.3) models how a DTLHS H is seen from the control software
after AD conversions. Since QFC control rests on AD conversion we must be careful not to
drive the plant outside the bounds in which AD conversion works correctly. This leads to
the definition of admissible action (Def. 5.1). Intuitively, an action is admissible in a state
if it never drives the system outside of its admissible region.

Definition 5.1 (Admissible actions). Let H = (X,U, Y,N) be a DTLHS and Q = (A,Γ)
be a quantization for H. An action u ∈ AU is A-admissible in s ∈ AX if for all s′, (∃y ∈
AY : N(s, u, y, s′)) implies s′ ∈ AX . An action û ∈ Γ(AU) is Q-admissible in ŝ ∈ Γ(AX) if
for all s ∈ Γ−1(ŝ), u ∈ Γ−1(û), u is A-admissible for s in H.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:13

Example 5.2. Let H be as in Ex. 3.2 and Q as in Ex. 4.10. We have that action u = 1
is not A-admissible in the state s = 2, thus û = 1 is not Q-admissible in the state ŝ = 1.
Analogously, û = 1 is not Q-admissible in ŝ = −1. It is easy to see that no other û, ŝ exist
s.t. û is not Q-admissible in ŝ.

Definition 5.3 (Control abstraction). Let H = (X,U, Y,N) be a DTLHS and Q = (A,Γ)

be a quantization for H. We say that the LTS Ĥ = (Γ(AX), Γ(AU), N̂) is a Q control

abstraction of H if its transition relation N̂ satisfies the following conditions:

(1) Each abstract transition stems from a concrete transition. Formally: for all ŝ, ŝ′ ∈

Γ(AX), û ∈ Γ(AU), if N̂(ŝ, û, ŝ′) then there exist s ∈ Γ−1(ŝ), u ∈ Γ−1(û), s′ ∈ Γ−1(ŝ′),
y ∈ AY such that N(s, u, y, s′).

(2) Each concrete transition is faithfully represented by an abstract transition, whenever it
is not a self loop and its corresponding abstract action is Q-admissible. Formally: for
all s, s′ ∈ AX , u ∈ AU such that ∃y : N(s, u, y, s′), if Γ(u) is Q-admissible in Γ(s) and

Γ(s) 6= Γ(s′) then N̂(Γ(s),Γ(u),Γ(s′)).
(3) If there is no upper bound to the length of concrete paths inside the counter-image

of an abstract state then there is an abstract self loop. Formally: for all ŝ ∈ Γ(AX),
û ∈ Γ(AU), if it exists an infinite run π in H such that ∀t ∈ N π(S)(t) ∈ Γ−1(ŝ) and

π(A)(t) ∈ Γ−1(û) then N̂(ŝ, û, ŝ). A self loop (ŝ, û, ŝ) of N̂ satisfying the above property
is said to be a non-eliminable self loop, and eliminable self loop otherwise.

Example 5.4. Let H be as in Ex. 3.2 and Q be as in Ex. 4.10. Any Q control abstraction
Ĥ of H has the form ({−1, 0, 1}, {0, 1}, N̂) where N̂ always contains at least all continuous
arrows in the automaton depicted in Fig. 4 and some dotted arrows. Note that the only
non-eliminable self loops are (0, 0, 0) and (0, 1, 0).

Along the same lines of the proof for Theor. 4.16, in [Mari et al. 2012c] we proved that
we cannot algorithmically decide if a self loop is eliminable or non-eliminable.

Proposition 5.5. Given a DTLHS H and a quantization Q, it is undecidable to de-
termine if a self loop is non-eliminable.

Note that if in Def. 5.3 we drop condition 3 and the guard Γ(s) 6= Γ(s′) in condition 2,
then we essentially get the usual definition of abstraction (e.g. see [Alur et al. 2006] and
citations thereof). As a result, any abstraction is also a control abstraction whereas a control
abstraction in general is not an abstraction since some self loops or some non admissible
actions may be missing.

In the following, we will deal with two types of control abstractions, namely full and
admissible control abstractions, which are defined as follows.

Definition 5.6 (Admissible and full control abstractions). Let H = (X,U, Y,N) be a

DTLHS and Q = (A,Γ) be a quantization for H. A Q control abstraction Ĥ = (Γ(AX),

Γ(AU), N̂) of H is an admissible Q control abstraction iff, for all ŝ ∈ Γ(AX), û ∈ Γ(AU) s.t.

û ∈ Adm(Ĥ, ŝ): i) û is Q-admissible in ŝ; ii) ∀s ∈ Γ−1(ŝ) ∀u ∈ Γ−1(û) ∃s′ ∈ DX ∃y ∈ DY

: N(s, u, y, s′), i.e. each concrete state in Γ−1(ŝ) has a successor for all concrete actions in
Γ−1(û).

We say that Ĥ is a full Q control abstraction if it satisfies properties 1 and 3 of Def. 5.3,
plus the following property (derived from property 2 of Def. 5.3): for all s, s′ ∈ AX , u ∈ AU

such that ∃y : N(s, u, y, s′), if Γ(s) 6= Γ(s′) then N̂(Γ(s), Γ(u), Γ(s′)).

Example 5.7. Let H be as in Ex. 3.2, Q be as in Ex. 4.10. For all Q admissible control
abstractions of H, N̂(1, 1, 1) = N̂(−1, 1,−1) = 0, since action 1 is not Q-admissible either

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:14 Federico Mari et al.

CONCRETE DTLHSs

H

Q CONTROL ABSTRACTIONS OF H

min

MAX

M̂

Ŵ

minFull

FULL

ADM

Fig. 5. Lattices on Q control abstractions.

in −1 or in 1 (see Ex. 5.2). On the contrary, for all full Q control abstractions of H,

N̂(1, 1, 1) = N̂(−1, 1,−1) = 1. Thus, a control abstraction s.t. N̂(1, 1, 1) ⊕ N̂(−1, 1,−1)
(where ⊕ is the logical XOR) is neither full nor admissible.

By the definition of quantization, a control abstraction is a finite LTS. It is possible to
show that two different admissible [full] Q control abstractions only differ in the number
of self loops. Moreover, the set of admissible [full] Q control abstraction is a finite lattice
with respect to the LTS refinement relation (Sect. 5.2). This implies that such lattices have
minimum (and maximum). Thus, it is easy to prove that the minimum admissible [full] Q
control abstraction is the admissible [full] Q control abstraction with non-eliminable self
loops only. Thus, the following proposition is a corollary of Prop. 5.5.

Proposition 5.8. Given a DTLHS H and a quantization Q, it is undecidable to state
if an admissible [full] Q control abstraction for H is the minimum admissible [full] Q control
abstraction for H.

5.1. Maximum and Minimum Control Abstractions

By Theor. 4.16, we cannot hope for a constructive sufficient and necessary condition for the
existence of a Q QFC solution to a DTLHS control problem, for a given Q. Accordingly,
our approach is able to determine (via a sufficient condition) if a Q QFC solution exists,
and otherwise to state (via a necessary condition) if a Q QFC solution cannot exist. If both
conditions are false, then our approach is not able to decide if aQQFC solution exists or not.
We base our sufficient [necessary] condition on computing a (close to) minimum admissible
[full] Q control abstraction. Theor. 5.9 gives the foundations for such an approach. The
proof of Theor. 5.9 follows from the definitions of admissible and full control abstractions
and properties of strong and weak solutions (Sect. 5.2). In the following theorem we use the
refinement order relation (denoted by ⊑) defined in Sect. 2.3.

Theorem 5.9. Let H be a DTLHS, Q = (A,Γ) be a quantization for H, and (H, I, G)
be a control problem.

(1) If Ĥ is an admissible Q control abstraction and K̂ is a strong solution to (Ĥ, Γ(I),

Γ(G)) then, for any control law k for K̂, K(x, u) = (k(Γ(x)) = Γ(u)) is a Q QFC
strong solution to (H, I, G).

(2) If Ĥ1 ⊑ Ĥ2 are two admissible Q control abstractions of H and K̂ is a strong solution

to (Ĥ2,Γ(I),Γ(G)), then K̂ is a strong solution to (Ĥ1,Γ(I),Γ(G)).

(3) If Ĥ is a full Q control abstraction and (Ĥ, Γ(I), Γ(G)) does not have a weak solution
then there exists no Q QFC (weak as well as strong) solution to (H, I, G).

(4) If Ĥ1 ⊑ Ĥ2 are two full Q control abstractions of H and K̂ is a weak solution to

(Ĥ1,Γ(I),Γ(G)), then K̂ is a weak solution to (Ĥ2,Γ(I),Γ(G)).

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:15

ONMLHIJK−2

1

PP

0 ++ONMLHIJK−1

1

PP

0

��

1
kk ONMLHIJKGFED@ABC0

1 ++

0

PP

1

��
ONMLHIJK1

1

PP

0

��

0
kk

Fig. 6. Q control abstraction without weak solutions.

Fig. 5 graphically represents a sketch of the correspondence between a concrete DTLHS
H and its control abstractions Ĥ lattices.

Example 5.10. Let P = (H, I, G) be as in Ex. 4.13 and Q = (A,Γ) be as in Ex.

4.10. For all admissible Q control abstractions Ĥ (see Ex. 5.7) not containing the eliminable

self loops (−1, 0,−1) and (1, 0, 1), K̂(x̂, û) ≡ [x̂ 6= 0 → û = 0] (see Ex. 4.15) is the strong

mgo for (Ĥ, Γ(I), Γ(G)). Thus, K(x, u) = K̂(Γ(x),Γ(u)) is a Q QFC solution to P . Let us
consider the quantization Q′ = (A,Γ′), where Γ′(w)=⌊w/2⌋. A full Q′ control abstraction

of H is L = ({−2,−1, 0, 1}, {0, 1}, N̂), where the transition N̂ is depicted in Fig. 6. (L,
Γ′(I), Γ′(G)) has no weak solution, thus P has no Q′ QFC solution.

5.2. Proof of Control Abstraction Properties

In this section we give proofs about control abstraction properties. This section can be
skipped at a first reading. In the following, we denote with C(H,Q) the set of all Q control
abstractions of a DTLHS H.

Fact 5.11. Let M1 = (S,B, T1) and M2 = (S,B, T2) be two admissible Q control
abstractions of a DTLHS H, with Q = (A,Γ) quantization for H. Then ∀x̂, x̂′ ∈ S s. t.
x̂ 6= x̂′, ∀â ∈ B [T1(x̂, â, x̂

′) ⇔ T2(x̂, â, x̂
′)]. The same holds if M1,M2 are full Q control

abstractions.

Proof. Let x̂ 6= x̂′ ∈ S, â ∈ B be such that T1(x̂, â, x̂
′) holds. If M1 is an admissible Q

control abstraction, this implies, by Def. 5.6, that â is A-admissible in x̂. From point 1 of
Def. 5.3 (for the admissible control abstraction case) or Def. 5.6 of full control abstraction
(for the full control abstraction case), and from T1(x̂, â, x̂

′) follows that ∃x ∈ Γ−1(x̂)∃x′ ∈
Γ−1(x̂′) : ∃a ∈ Γ−1(â)∃y : N(x, a, y, x′). By point 2 of Def. 5.3 this implies that T2(x̂, â, x̂

′)
holds.

The same reasoning may be applied to prove the other implication.

Fact 5.12. Given a DTLHS H and a quantization Q, the set (C(H,Q),⊑) of Q control
abstractions of H is a lattice. Moreover, the set of full Q control abstractions of H is a
lattice.

Proof. By conditions 2 and 3 of Def. 5.3 all control abstractions do contain all admis-
sible actions that have a concrete witness and all non-eliminable self-loops.

As a consequence, if S is the set of eliminable self-loops and U is the set of non admissible
actions, then (C(H,Q),⊑) is isomorphic to the complete lattice (2S×U ,⊆).

Analogously, the set of full Q control abstractions of H is isomorphic to the complete
lattice (2S ,⊆).

Proof Theorem 5.9. The idea underlying the proof is that two different admissible
(as well as full) control abstractions, with the same quantization, have the same loop free
structure, i.e. the same arcs except from self loops, as proved by Prop. 5.11. For ease
of notation, given a state x (resp. an action u) we will often denote the corresponding

abstract state Γ(x) (resp. action Γ(u)) with x̂ (resp. û). Analogously, we will often write Î

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:16 Federico Mari et al.

(resp. Ĝ) for Γ(I) (resp. Γ(G)). In the following, P = (H, I, G), P̂ = (Ĥ,Γ(I),Γ(G)), and

Ĥ = (Γ(AX),Γ(AU), N̂).

Proof of point 1. Applying the definition of solution to a DTLHS control problem
(Def. 4.12), we have to show that if K̂ is a strong solution to the LTS control problem

(Ĥ, Î , Ĝ), then K defined by K(x, u) = (k(x̂) = û) is a strong solution to the LTS control

problem (LTS(H), I, B‖Γ‖(G)), being k a control law for K̂.

Note that, since Ĥ is an admissible control abstraction, it contains admissible actions
only. This implies that all actions enabled by K̂ in x̂ are Q-admissible in x̂. Hence, we have
that all actions enabled by K in x are A-admissible in x. Together with point 2 of Def. 5.3,
this implies that, for any transition (x, u, x′) of LTS(H)(K) such that x̂ 6= x̂′, (x̂, û, x̂′) is a

(abstract) transition of Ĥ(K̂).

First of all, we prove that I ⊆ Dom(K). Given a state x ∈ I, we have that x̂ ∈ Î. Since

K̂ is a strong solution to P̂, we have that Î ⊆ Dom(K̂), thus x̂ ∈ Dom(K̂). Hence, there

exists û ∈ Γ(AU) such that K̂(x̂, û) holds, which implies that k(x̂) is defined. By definition
of K, we have that for all u ∈ Γ−1(k(x̂)) and for all x ∈ Γ−1(x̂) K(x, u) holds, which means
that x ∈ Dom(K).

Now, we prove that for all x ∈ Dom(K), Jstrong(LTS(H)(K),B‖Γ‖(G), x) is finite. Let us

suppose by absurd that Jstrong(LTS(H)(K),B‖Γ‖(G), x) = ∞. This implies that one of the
two following holds:

(1) there exists a finite fullpath π = x0u0x1u1 . . . xnun in LTS(H)(K) such that x0 = x,
Adm(LTS(H)(K), xn) = ∅ and, for all i ∈ [n], xi 6∈ B‖Γ‖(G);

(2) there exists an infinite fullpath π = x0u0x1u1 . . . xnun . . . in LTS(H)(K) such that x0 =
x and, for all i ∈ N, xi 6∈ B‖Γ‖(G).

Let us deal with the finite fullpath case first (point 1 above). Let π̂ = x̂0û0 . . . ûn−1x̂n,
and let ρ be defined from π̂ by collapsing all consecutive equal (abstract) states into one
(abstract) state. Formally, |ρ| = maxi∈[n] α(i) and ρ(i) = π̂(S)(α(i)) = Γ(π(S)(α(i))), where
the function α : N→ N is recursively defined as follows:

— let Zz = {j | z < j ≤ n ∧ Γ(xj) 6= Γ(xz)}
— α(0) = 0

— α(i + 1) =

{

α(i) if Zα(i) = ∅

minZα(i) otherwise

By the fact (proved above) that if (x, u, x′) is a transition of LTS(H)(K) with x̂ 6= x̂′,

then (x̂, û, x̂′) is a transition of Ĥ(K̂), we have that ρ is a run of Ĥ(K̂). Let m = |ρ| =

maxi∈[n] α(i). Since K̂ is a strong solution to P̂ and x̂ ∈ Dom(K̂), we have that x̂m ∈

Dom(K̂). This implies that there exists û ∈ Γ(AU) s.t. K̂(x̂m, û) and k(x̂m) = û , thus that

there exists û ∈ Adm(Ĥ(K̂), x̂m). Thus by Def. 5.6 (and since xn ∈ Γ−1(x̂m)) we have that
Adm(LTS(H)(K), xn) ⊇ Γ−1(û) 6= ∅, which implies that π cannot be a finite fullpath.

As for the infinite fullpath case (point 2 above), we observe that in π we cannot have
an infinite sequence xmumxm+1um+1 . . . such that for all j ≥ m, Γ(xj) = Γ(xm) and
Γ(uj) = Γ(um). In fact, suppose by absurd that this is true, and let m̃ be the least m for
which this happens. Then (x̂m, ûm, x̂m) is a non-eliminable self loop. Since xj /∈ B‖Γ‖(G) for

all j ≥ m, and thus x̂j /∈ Ĝ for all j ≥ m, we also have that Jstrong(Ĥ
(K̂), Ĝ, x̂m) =∞. By

applying the same reasoning used for the finite fullpath case, we have that there is a path

in Ĥ(K̂) leading from x̂ to x̂m, which implies that Jstrong(Ĥ
(K̂), Ĝ, x̂) = ∞. Finally, this

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:17

contradicts the fact that K̂ is a strong solution to P̂ and x̂ ∈ Dom(K̂). Since the control

law k for K̂ (and thus K, which is defined on k) only enables one action û for each abstract
state, we may conclude that we cannot have an infinite sequence xmumxm+1um+1 . . . such
that for all j ≥ m, Γ(xj) = Γ(xm).

Thanks to this fact, from a given infinite fullpath π = x0u0x1u1 . . . xnun . . . of LTS(H)(α)

with x0 = x, we can extract an infinite abstract fullpath ρ s.t. ρ(i) = Γ(π(S)(α(i))), where
the function α : N→ N is recursively defined as follows:

— α(0) = 0
— α(i + 1) = min{j | α(i) < j ∧ Γ(xj) 6= Γ(xα(i))}.

By the fact (proved above) that if (x, u, x′) is a transition of LTS(H)(K) with x̂ 6= x̂′,

then (x̂, û, x̂′) is a transition of Ĥ(K̂), we have that ρ is a run of Ĥ(K̂). Moreover, since for

all i ∈ N xi 6∈ B‖Γ‖(G), then we have that for all i ∈ N x̂α(i) 6∈ Ĝ. This contradicts the fact

that K̂ is a strong solution to P̂ and x̂ ∈ Dom(K̂).

Proof of point 2. Let Ĥ1 = (Γ(AX), Γ(AU), T1) and Ĥ2 = (Γ(AX), Γ(AU), T2) be two

admissible Q control abstractions ofH, with Ĥ1 ⊑ Ĥ2. If Ĥ1 = Ĥ2 the thesis is proved, thus

let us suppose that Ĥ1 6= Ĥ2. By Fact 5.11, the only difference between Ĥ1 and Ĥ2 may
be in a finite number of (eliminable) self loops which are in Ĥ2 only. That is, there exists a
transitions set B = {(x̂1, û1, x̂1), . . . , (x̂m, ûm, x̂m)} s.t. for all (x̂i, ûi, x̂i) ∈ B we have that
T1(x̂i, ûi, x̂i) = 0 ∧ T2(x̂i, ûi, x̂i) = 1, and for all (x̂, û, x̂′) ∈ Γ(AX) × Γ(AU) × Γ(AX) we

have that if (x̂, û, x̂′) /∈ B then T1(x̂, û, x̂) = T2(x̂, û, x̂). Let K̂ be the strong mgo to the

LTS control problem (Ĥ2, Î , Ĝ) and let (x̂i, ûi, x̂i) ∈ B.

Note that if x̂i /∈ Ĝ and K̂(x̂i, ûi) then Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂i) = ∞ since there exists a

π ∈ Path(Ĥ
(K̂)
2 , x̂i, ûi) s.t. π(S)(t) = x̂i and π(A)(t) = ûi for all t ∈ N. As a consequence,

if x̂i /∈ Ĝ then K̂(x̂i, ûi) does not hold. Moreover, suppose that x̂i ∈ Ĝ. Since (x̂i, ûi, x̂i) is

an eliminable self loop of Ĥ2 and Ĥ2 is an admissible Q control abstraction, there exists a
state x̂′ 6= x̂i such that T2(x̂i, ûi, x̂

′).

We are now ready to prove the thesis. Since we already know that Î ⊆ Dom(K̂), we only

have to prove that i) K̂ is a controller for Ĥ1 and that ii) Jstrong(Ĥ
(K̂)
1 , Ĝ, x̂) < ∞ for all

x̂ ∈ Dom(K̂).

As for the first point, we have to show that K̂(x̂, û) implies û ∈ Adm(Ĥ1, x̂) (Def. 4.1).

Suppose by absurd that û /∈ Adm(Ĥ1, x̂) for some x̂, û. Since K̂(x̂, û) implies û ∈

Adm(Ĥ2, x̂), we have that (x̂, û, x̂) ∈ B. If x̂ /∈ Ĝ then K̂(x̂, û) = 0, which is false by hy-

pothesis. If x̂ ∈ Ĝ, then there exists a state x̂′ 6= x̂ such that T2(x̂, û, x̂
′). Thus, T1(x̂, û, x̂

′)

holds by Fact 5.11 and we have û ∈ Adm(Ĥ1, x̂), which is absurd.

As for the second one, it is sufficient to prove that Jstrong(Ĥ
(K̂)
1 , Ĝ, x̂) =

Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂). This can be proved by induction on the value of Jstrong(Ĥ

(K̂)
2 , Ĝ, x̂).

Suppose Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂) = 1. Then, ∅ 6= Img(Ĥ

(K̂)
2 , x̂, û) ⊆ Ĝ for all û s.t. K̂(x̂, û). If

for all û s.t. K̂(x̂, û) there exists a state x̂′ 6= x̂ s.t. x̂′ ∈ Img(Ĥ
(K̂)
2 , x̂, û), then we have that

x̂′ ∈ Img(Ĥ
(K̂)
1 , x̂, û) by Fact 5.11, and since ∅ 6= Img(Ĥ

(K̂)
1 , x̂, û) ⊆ Img(Ĥ

(K̂)
2 , x̂, û) ⊆ Ĝ

we have that Jstrong(Ĥ
(K̂)
1 , Ĝ, x̂) = 1 = Jstrong(Ĥ

(K̂)
2 , Ĝ, x̂). Otherwise, let û be s.t. K̂(x̂, û)

and T2(x̂, û, x̂
′) → x̂′ = x̂. Note that this implies x̂ ∈ Ĝ. If (x̂, û, x̂) /∈ B, then T1(x̂, û, x̂)

thus Jstrong(Ĥ
(K̂)
1 , Ĝ, x̂) = 1 = Jstrong(Ĥ

(K̂)
2 , Ĝ, x̂). The other case, i.e. (x̂, û, x̂) ∈ B, is

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:18 Federico Mari et al.

impossible since, by the reasoning above and being x̂ ∈ Ĝ, it would imply that there exists
a state x̂′ 6= x̂ such that T2(x̂, û, x̂

′).

Suppose now that for all x̂ s.t. Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂) = n, Jstrong(Ĥ

(K̂)
1 , Ĝ, x̂) =

Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂). Let x̂ ∈ Dom(K̂) be s.t. Jstrong(Ĥ

(K̂)
2 , Ĝ, x̂) = n + 1. If (x̂, û, x̂) /∈ B

for any û, then Img(Ĥ
(K̂)
2 , x̂, û) = Img(Ĥ

(K̂)
1 , x̂, û) for all û, thus Jstrong(Ĥ

(K̂)
1 , Ĝ, x̂) =

Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂) by induction hypothesis. Otherwise, let (x̂, û, x̂) ∈ B for some û.

By the reasoning above, if x̂ /∈ Ĝ then K̂(x̂, û) = 0, and again Jstrong(Ĥ
(K̂)
1 , Ĝ, x̂) =

Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂) by induction hypothesis. If x̂ ∈ Ĝ, then there exists a state x̂′ 6= x̂

such that T2(x̂, û, x̂
′) (and T1(x̂, û, x̂

′)). Since Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂) = n + 1, we must have

Jstrong(Ĥ
(K̂)
2 , Ĝ, x̂′) ≤ n, thus again Jstrong(Ĥ

(K̂)
1 , Ĝ, x̂) = Jstrong(Ĥ

(K̂)
2 , Ĝ, x̂) by inductive

hypothesis.
Finally, note that in general K̂ is not optimal for (H1, Î , Ĝ). As a counterexample, consider

the control abstractions Ĥ2 = ({0, 1, 2}, {0, 1}, {(0, 0, 2), (0, 0, 0), (0, 1, 1), (1, 1, 2), (2, 0,

2)}) and Ĥ1 = ({0, 1, 2}, {0, 1}, {(0, 0, 2), (0, 1, 1), (1, 1, 2), (2, 0, 2)}), with Î = {0, 1, 2}

and Ĝ = {2}. We have that the strong mgo for Ĥ2 is K̂2 = {(0, 1), (1, 1), (2, 0)}, whilst

the strong mgo for Ĥ1 is K̂1 = {(0, 0), (1, 1), (2, 0)}, with Jstrong(Ĥ
(K̂1)
1 , Ĝ, 0) = 1 and

Jstrong(Ĥ
(K̂2)
1 , Ĝ, 0) = Jstrong(Ĥ

(K̂2)
2 , Ĝ, 0) = 2.

Proof of point 3. Applying the definition of DTLHS control problem (Def. 4.12), we will
show that if K is a weak solution to the LTS control problem (LTS(H), I, B‖Γ‖(G)), and

Ĥ is any full Q control abstraction of H then there exists a weak solution K̂ to the control
problem (Ĥ, Î , Ĝ).

Let us define, for x̂ ∈ Γ(AX) and û ∈ Γ(AU), K̂(x̂, û) = ∃x ∈ Γ−1(x̂) ∃u ∈ Γ−1(û) :

K(x, u). We show that K̂ is a weak solution to any full Q control abstraction of H.

Let Ĥ be a full Q control abstraction of H. First of all, we show that K̂ is a controller for
Ĥ (Def. 4.1), i.e. that K̂(x̂, û) implies û ∈ Adm(Ĥ, x̂). Suppose K̂(x̂, û) holds: this implies
that there exist x ∈ Γ−1(x̂), u ∈ Γ−1(û) s.t. K(x, u) and u ∈ Adm(H, x). If there exists

x′ ∈ AX s.t. x′ ∈ Img(H, x, u) and x̂′ 6= x̂, then, being Ĥ a full Q control abstraction of

H, we have that (x̂, û, x̂′) is a transition of Ĥ, thus û ∈ Adm(Ĥ, x̂). Otherwise, one of the
following must hold:

— Img(H, x, u) = ∅, which is impossible since K(x, u);
— for all x′ ∈ AX s.t. x′ ∈ Img(H, x, u), we have that either x′ /∈ AX or x̂′ = x̂. Being

K a weak controller for H defined only on AX × AU (i.e., K(x, u) implies x ∈ AX

and u ∈ AU), and given that K(x, u) holds, we must have that there exists x′ ∈ AX

s.t. x′ ∈ Img(H, x, u) and x̂′ = x̂. If x = x′, then there exists an infinite path inside
Γ−1(x̂) with actions in Γ−1(û), i.e. (x̂, û, x̂) is a non-eliminable self loop. This implies

that N̂(x̂, û, x̂) holds, thus û ∈ Adm(Ĥ, x̂). Otherwise, i.e. if x 6= x′, then we whole
reasoning may be applied to x′. Then, either we arrive to a state t /∈ Γ−1(x̂) starting

from a state in Γ−1(x̂), and N̂(x̂, û, t̂) implies û ∈ Adm(Ĥ, x̂), or we have an infinite

path inside Γ−1(x̂) via Γ−1(û) , thus (x̂, û, x̂) is a non-eliminable self loop and N̂(x̂, û, x̂)

implies û ∈ Adm(Ĥ, x̂).

We now have to prove that K̂ is a weak solution to Ĥ, where Ĥ is a full Q control
abstraction of H. First of all, we show that Î ⊆ Dom(K̂). Given x̂ ∈ Î, we have that there

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:19

exists x ∈ Γ−1(x̂) such that x ∈ I. Since K is a weak solution to P , there exists u ∈ AU s.t.

K(x, u), thus by definition of K̂, K̂(x̂, û) holds, and hence x̂ ∈ Dom(K̂).

Now, we show that for all x̂ ∈ Dom(K̂), Jweak(Ĥ
(K̂), Ĝ, x̂) is finite. By definition of K̂,

and since K is a weak solution to P , there exists a finite path π = x0u0x1u1 . . . un−1xn

such that x0 ∈ Γ−1(x̂), xi ∈ AX for all 0 ≤ i ≤ n and xn ∈ B‖Γ‖(G).
Let π̂ = x̂0û0 . . . ûn−1x̂n, and let ρ be defined from π̂ by collapsing all consecutive equal

(abstract) states into one state. Formally, |ρ| = maxi∈[n] α(i) and ρ(i) = π̂(S)(α(i)) =

Γ(π(S)(α(i))), where the function α : N→ N is recursively defined as follows:

— let Zz = {j | z < j ≤ n ∧ Γ(xj) 6= Γ(xz)}
— α(0) = 0

— α(i + 1) =

{

α(i) if Zα(i) = ∅

minZα(i) otherwise

In a full Q control abstraction Ĥ, if (x, u, x′) is transition of LTS(H) and x̂ 6= x̂′, then

N̂(x̂, û, x̂′). Then we have that ρ is a finite path in Ĥ(K̂) that leads from x̂0 = x̂ to the goal.

As a consequence, K̂ is a weak solution to P̂.

Proof of point 4. Analogously to the proof of point 2, let Ĥ1 = (Γ(AX), Γ(AU), T1)

and Ĥ2 = (Γ(AX), Γ(AU), T2) be two full Q control abstractions of H, with Ĥ1 ⊑ Ĥ2. If

Ĥ1 = Ĥ2 the thesis is proved, thus let us suppose that Ĥ1 6= Ĥ2. By Fact 5.11, the only
difference between Ĥ1 and Ĥ2 may be in a finite number of eliminable self loops which are
in Ĥ2 only. Let B = {(x̂1, û1, x̂1), . . . , (x̂m, ûm, x̂m)} be the set of such self loops. Let K̂ be

the weak mgo to the LTS control problem (Ĥ1, Î , Ĝ) and let (x̂i, ûi, x̂i) ∈ B.

Since we already know that Î ⊆ Dom(K̂), we only have to prove that i) K̂ is a controller

for Ĥ2 and that ii) Jweak(Ĥ
(K̂)
2 , Ĝ, x̂) <∞ for all x̂ ∈ Dom(K̂).

As for the first point, we have to show that K̂(x̂, û) implies û ∈ Adm(Ĥ2, x̂) (Def. 4.1).

Since K̂(x̂, û) implies û ∈ Adm(Ĥ1, x̂), and since û ∈ Adm(Ĥ1, x̂) implies û ∈ Adm(Ĥ2, x̂),
this point is proved.

As for the second one, it is sufficient to prove that Jweak(Ĥ
(K̂)
2 , Ĝ, x̂) ≤ Jweak(Ĥ

(K̂)
1 , Ĝ, x̂).

This can be proved by induction on the value of Jweak(Ĥ
(K̂)
1 , Ĝ, x̂).

Suppose Jweak(Ĥ
(K̂)
1 , Ĝ, x̂) = 1. Then, Img(Ĥ

(K̂)
1 , x̂, û) ∩ Ĝ 6= ∅ for all û s.t. K̂(x̂, û).

Since Ĥ2 only adds self loops to Ĥ1, we have that Img(Ĥ
(K̂)
2 , x̂, û) ∩ Ĝ 6= ∅ for all û s.t.

K̂(x̂, û), thus Jweak(Ĥ
(K̂)
2 , Ĝ, x̂) = 1 = Jweak(Ĥ

(K̂)
1 , Ĝ, x̂).

Suppose now that for all x̂ s.t. Jweak(Ĥ
(K̂)
1 , Ĝ, x̂) = n, Jweak(Ĥ

(K̂)
2 , Ĝ, x̂) ≤ Jweak(Ĥ

(K̂)
1 ,

Ĝ, x̂). Let x̂ be s.t. Jweak(Ĥ
(K̂)
1 , Ĝ, x̂) = n + 1. If (x̂, û, x̂) /∈ B for any û, then

Img(Ĥ
(K̂)
1 , x̂, û) = Img(Ĥ

(K̂)
2 , x̂, û) for all û, thus Jweak(Ĥ

(K̂)
2 , Ĝ, x̂) ≤ Jweak(Ĥ

(K̂)
1 , Ĝ, x̂)

by induction hypothesis. Otherwise, let (x̂, û, x̂) ∈ B for some û. If x̂ /∈ Ĝ we simply

have that Jweak(Ĥ
(K̂)
2 , Ĝ, x̂) ≤ Jweak(Ĥ

(K̂)
1 , Ĝ, x̂) by induction hypothesis. Otherwise, if

x̂ ∈ Ĝ, let K̂1 be s.t. K̂1(x̂, û) = 0 and K̂1(ŝ, â) = K̂(ŝ, â) for (ŝ, â) 6= (x̂, û). Then,

Jweak(Ĥ
(K̂)
2 , Ĝ, x̂) = max{1, Jweak(Ĥ

(K̂1)
1 , Ĝ, x̂)} ≤ Jweak(Ĥ

(K̂)
1 , Ĝ, x̂′), thus the thesis is

proved.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:20 Federico Mari et al.

6. QUANTIZED CONTROLLER SYNTHESIS

In this section, we present the quantized controller synthesis algorithm (function qCtrSyn
in Alg. 1). Function qCtrSyn takes as input a DTLHS control problem P = (H, I, G)
and a quantization Q. Then, resting on Theor. 5.9, qCtrSyn computes an admissible Q
control abstraction M̂ in order to find a Q QFC strong solution to P , and a full Q control
abstraction Ŵ to determine if such a solution does not exist.

Sects. 6.6, 6.7, 6.8, and 6.9 show theoretical and implementation details that can be
skipped at a first reading.

Namely, as for the sufficient condition, we compute the strong mgo K̂ for the LTS control
problem (M̂,Γ(I),Γ(G)). If K̂ exists, then a Q QFC strong solution to P may be built from

K̂. Note that, if K̂ does not exist, a strong solution may exist for some other admissible Q
control abstraction Ĥ. However, by point 2 of Theor. 5.9, Ĥ must be lower than M̂ in the

hierarchy lattice (see Fig. 5). This suggests to compute M̂ as the minimum (admissible) Q
control abstraction of H. Since by Prop. 5.8 we are not able to compute the minimum Q
control abstraction, we compute M̂ as a close to minimum admissibleQ control abstraction,
i.e. an admissible Q control abstraction containing as few eliminable self loops as possible
(see Ex. 4.4).

As for the necessary condition, we compute the weak mgo K̂ for the LTS control problem
(Ŵ ,Γ(I),Γ(G)). If K̂ does not exists, then a Q QFC (weak as well as strong) solution to

P cannot exist. Note that, if K̂ exists, a weak solution may not exist for some other full
Q control abstraction Ĥ. However, by point 4 of Theor. 5.9, Ĥ must be lower than Ŵ in
the hierarchy lattice (see Fig. 5). Hence, again by Prop. 5.8, we compute Ŵ as the close to
minimum full Q control abstraction.

Algorithm 1 QFC synthesis

Input: DTLHS control problem (H, I, G), quantization Q = (A,Γ)
function qCtrSyn(H, Q, I, G)

1. Î ← Γ(I), Ĝ← Γ(G)

2. M̂ ←minCtrAbs(H, Q)

3. (b, D̂, K̂) ← strongCtr(M̂, Î, Ĝ)

4. if b then return (Sol, D̂, K̂)

5. Ŵ ← minFullCtrAbs (H,Q)

6. if existsWeakCtr(Ŵ, Î , Ĝ) then return (Unk, D̂, K̂)

7. else return (NoSol, D̂, K̂)

6.1. QFC Synthesis Algorithm

Our QFC synthesis algorithm (function qCtrSyn outlined in Alg. 1) takes as input a DTLHS
H = (X , U , Y , N), a quantization Q = (A,Γ), and two predicates I and G over X , such

that (H, I, G) is a DTLHS control problem. Function qCtrSyn returns a tuple (µ, D̂,

K̂), where: µ ∈ {Sol,NoSol,Unk}, D̂ = Dom(K̂) and K̂ is such that the controller K,

defined by K(x, u) = K̂(Γ(x),Γ(u)) is a Q QFC (strong) solution to the control problem

(H,Γ−1(D̂), G).

We represent boolean functions (e.g. the transition relation of Ĥ) and sets (by using their
characteristic functions) using Ordered Binary Decision Diagrams (OBDD) [Bryant 1986].

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:21

For the sake of clarity, however, we will present our algorithms using a set theoretic notation
for sets and predicates over sets.

Alg. 1 starts (line 1) by computing a quantization Î of the initial region I and a quanti-

zation Ĝ of the goal region G (further details are given in Sect. 6.3).

Function minCtrAbs in line 2 computes the close to minimum Q control abstraction M̂
of H (see Sect. 6.4.1 for further details about minFullCtrAbs).

Line 3 determines if a strong mgo to the LTS control problem P̂ = (M̂, Î , Ĝ) exists by call-
ing function strongCtr that implements a variant of the algorithm in [Cimatti et al. 1998].

Given M̂, Î , Ĝ, function strongCtr returns a triple (b, D̂, K̂) such that K̂ is the strong mgo

to (M̂,∅, Ĝ) and D̂ = Dom(K̂). If b is True then K̂ is a strong mgo for P̂ (i.e. Î ⊆ D̂),

and qCtrSyn returns the tuple (Sol, D̂, K̂) (line 4). By Theor. 5.9 (point 1), K(x, u) =

K̂(Γ(x),Γ(u)) is a Q QFC solution to the DTLHS control problem (H, I, G). Otherwise, in
lines 5–7 qCtrSyn tries to establish if such a solution may exist or not.

Function minFullCtrAbs in line 5 computes the close to minimum full Q control abstrac-
tion Ŵ of H (see Sect. 6.4.1 for further details about minFullCtrAbs). Line 6 checks if the

weak mgo to P̂ ′ = (Ŵ , Î , Ĝ) exists by calling function existsWeakCtr, which is based on
the algorithm in [Tronci 1998].

If function existsWeakCtr returns False, then a weak mgo to P̂ ′ does not exist, and since
the weak mgo is unique no weak solution exists to P̂ ′. By Theor. 5.9 (point 3), no Q QFC
solution exists for the DTLHS control problem (H, I, G) and accordingly qCtrSyn returns
NoSol (line 7). Otherwise no conclusion can be drawn and accordingly Unk is returned

(line 6). In any case, the strong mgo K̂ for P̂ for the (close to) minimum control abstraction

is returned, together with its controlled region D̂.

6.2. Synthesis Algorithm Correctness

The above considerations imply correctness of function qCtrSyn (and thus of our approach),
as stated by the following theorem.

Theorem 6.1. Let H be a DTLHS, Q = (A,Γ) be a quantization, and (H, I, G) be a

DTLHS control problem. Then qCtrSyn(H, Q, I, G) returns a triple (µ, D̂, K̂) such that:

µ ∈ {Sol, NoSol, Unk}, D̂ = Dom(K̂) and, for all control laws k for K̂, K(x, u) =

(k(Γ(x)) = Γ(u)) is a Q QFC solution to the control problem (H,Γ−1(D̂), G). Furthermore,

the following holds: i) if µ = Sol then I ⊆ Γ−1(D̂) and K is a Q QFC solution to the
control problem (H, I, G); ii) if µ = NoSol then there is no Q QFC solution to the control
problem (H, I, G).

Remark 6.2. [Mazo and Tabuada 2011] describes a method for the automatic con-
trol software synthesis for continuous time linear systems. Function strongCtr, as well
as the approach in [Mazo and Tabuada 2011], returns K̂ as a (worst case) time opti-

mal controller, i.e. in each state K̂ enables the actions leading to a goal state in the
least number of transitions. This stems from the fact that in both cases (strongCtr and
[Mazo and Tabuada 2011]) the OBDD representation for the controller is computed using
the approach in [Cimatti et al. 1998] where symbolic control synthesis algorithms for finite
state LTSs have been studied in a universal planning setting.

Remark 6.3. Instead of computing the controller (function strongCtr) with
[Cimatti et al. 1998], it is possible to trade the size of the synthesized controller with time
optimality while preserving closed loop performances. Such an issue has been investigated
in [Alimguzhin et al. 2012b].

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:22 Federico Mari et al.

Remark 6.4. Note however that K̂ may not be time optimal for the real plant. In fact,
self loops elimination shrinks all concrete sequences of the form xn, un, . . ., xm in every path
of LTS(H) into a single abstract transition (x̂n, ûn, x̂m) of M̂ whenever x̂n = . . . = x̂m−1

and ûn = . . . = ûm−1. Thus, the length of paths in the plant model and those in the control
abstraction used for the synthesis may not coincide. Moreover, nondeterminism added by
quantization might lead to prefer an action û1 to an action û2 for an abstract state x̂, whilst
actions in û2 might be better for some real states inside x̂. Finally, since we are not able to
compute the minimum control abstraction, we may discard a possibly optimal action û on
a state x̂ if the following holds: (x̂, û, x̂) is an eliminable self loop, but function minCtrAbs
decides that it is non-eliminable. For these reasons we refer to our controller as a near time
optimal controller.

6.3. Quantization

In the following let H = (X , U , Y , N) be a DTLHS, Q = (A,Γ) be a quantization for H,
and (H, I, G) be a DTLHS control problem.

In our approach we consider Γ only in problems of type P (W) ≡ (max, J(W), L(W) ∧
(Γ(W) = v̂)), where W is either X,X ′ or U , J(W) is a linear expression, L(W) a conjunctive
predicate and (Γ(W) = v̂) ≡

∧

i∈[|W |](γwi
(wi) = v̂i), with wi ∈ W . In order to be able to

solve P (W) via a MILP solver, we restrict ourselves to quantization functions γwi
for which

equality tests can be represented by using conjunctive predicates. Namely, for w ∈ X∪U , we
employ the uniform quantization γw : Aw → [0,∆w − 1], defined for a given ∆w as follows.
Let δw = (supAw − inf Aw)/∆w. We have that γw(w) = ẑ if and only if the conjunctive
predicate Pγw

(w, ẑ) ≡ inf Aw + δwẑ ≤ w ≤ inf Aw + δw(ẑ + 1) holds.

We may now explain how Î , Ĝ are effectively computed in line 1 of Alg. 1. Since the
initial region I is represented as a conjunctive predicate, its quantization Î is computed by
solving |Γ(AX)| feasibility problems. More precisely, Î = {x̂ | feasible(I(X) ∧ Γ(X) = x̂)}.

Similarly, the quantization Ĝ of the goal region G is Ĝ = {x̂ | feasible(G(X)∧ Γ(X) = x̂)}.

Algorithm 2 Building control abstractions

Input: DTLHS H = (X,U, Y,N), quantization Q = (A,Γ).
function minCtrAbs (H, Q)

1. N̂ ← ∅

2. for all x̂ ∈ Γ(AX) do
3. for all û ∈ Γ(AU) do

4. if ¬ Q-admissible(H,Q, x̂, û) then continue

5. if selfLoop(H,Q, x̂,û) then N̂ ← N̂ ∪ {(x̂, û, x̂)}
6. O ← overImg(H,Q, x̂, û)
7. for all x̂′ ∈ Γ(O) do
8. if x̂ 6= x̂′∧existsTrans(H,Q, x̂, û, x̂′) then

9. N̂←N̂ ∪ {(x̂, û, x̂′)}

10. return N̂

6.4. Computing Minimum Control Abstractions

In this section, we present in Alg. 2 function minCtrAbs, which effectively computes a close
to minimum Q control abstraction M̂ = (Γ(AX),Γ(AU), N̂) for a given H.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:23

Starting from the empty transition relation (line 1) function minCtrAbs checks for every

triple (x̂, û, x̂′) ∈ Γ(AX) × Γ(AU) × Γ(AX) if the transition (x̂, û, x̂′) belongs to M̂ and

accordingly adds it to N̂ or not.
For any pair (x̂, û) in Γ(AX) × Γ(AU) line 4 checks if û is Q-admissible in x̂. This

check is carried out by determining if the predicate P (X,U, Y,X ′, x̂, û) ≡ N(X,U, Y,X ′) ∧
Γ(X) = x̂ ∧ Γ(U) = û ∧ X ′ 6∈ AX is not feasible. If û is not Q-admissible in x̂ (i.e., if

P (X,U, Y,X ′, x̂, û) is feasible), no transition of the form (x̂, û, x̂′) is added to N̂ . Note
that P (X,U, Y,X ′, x̂, û) is not a conjunctive predicate, however it is possible to check its
feasibility by properly calling function feasible 2|X | times (Sect. 6.9).

If û is Q-admissible in x̂, line 5 checks if the self loop (x̂, û, x̂) has to be added to N̂ . To
this aim, we employ a function selfLoop (see Sect. 6.5) which takes a (state, action) pair
(x̂, û) and returns False if the self loop (x̂, û, x̂) is eliminable.

Function overImg (line 6) computes a rectangular region O, that is a quite tight over-
approximation of the set of one step reachable states from x̂ via û. O is obtained by
computing for each state variable xi the minimum and maximum possible values for
the corresponding next state variable. Namely, O =

∏

i=1,...,|X|[γxi
(mi), γxi

(Mi)] where

mi = optimalValue(min, x′
i, N(X,U, Y,X ′) ∧ A(X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û) and

Mi = optimalValue(max, x′
i, N(X,U, Y,X ′) ∧ A(X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û).

Finally, for each abstract state x̂′ ∈ Γ(O) line 8 checks if there exists a concrete transition
realizing the abstract transition (x̂, û, x̂′) when x̂ 6= x̂′. To this end, function existsTrans
solves the MILP problem N(X,U, Y,X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û ∧ Γ(X ′) = x̂′.

Remark 6.5. From the nested loops in lines 2, 3, 7 we have that minCtrAbs worst case
runtime is O(|Γ(AX)|2|Γ(AU)|). However, thanks to the heuristic implemented in function
overImg , minCtrAbs typical runtime is about O(|Γ(AX)||Γ(AU)|) as confirmed by our ex-
perimental results (see Sect. 8, Fig. 7). The same holds for function minFullCtrAbs (see
Sect. 6.4.1).

Remark 6.6. Function minCtrAbs is explicit in the (abstract) states and actions of Ĥ
and symbolic with respect to the auxiliary variables (modes) in the transition relation N
of H. As a result our approach will work well with systems with just a few state variables
and many modes, our target here.

6.4.1. Computing Minimum Full Control Abstraction. Function minCtrAbs can be easily mod-
ified in order to compute the close to minimum full Q control abstraction, thus obtaining
function minFullCtrAbs called in Alg. 1, line 5. Function minFullCtrAbs is obtained by
removing the highlighted code (on grey background) from Alg. 2, namely the admissibility
check in line 4.

6.5. Self Loop Elimination

In order to exactly get the minimum control abstraction, function selfLoop should return
True iff the given self loop is non-eliminable. This is undecidable by Prop. 5.5. Function
selfLoop, outlined in Alg. 3, checks a sufficient gradient based condition for self loop elimi-
nation that in practice turns out to be very effective (see Tabs. I and II in Sect. 8). That is,
function selfLoop returns False when a self loop is eliminable (or there is not a concrete
witness for it). On the other hand, if function selfLoop returns True, then the self loop
under consideration may be non-eliminable as well as eliminable. In a conservative way, we
assume self loops for which function selfLoop returns True to be non-eliminable (i.e. they

are added to M̂, see line 5 of Alg. 2).
Function selfLoop in Alg. 3, which correctness is proved in Sect. 6.6, works as follows.

First of all it checks if there is a concrete witness for the self loop under consideration. If it is
not the case, selfLoop returns False (line 1). Otherwise, for each real variable xi, it tries to

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:24 Federico Mari et al.

establish if xi is either always increasing (line 4) or always decreasing (line 6) inside Γ−1(x̂)
by performing actions in Γ−1(û). If this is the case, we have that, being Γ−1(x̂) a compact
set, no Zeno-phenomena may arise, thus executing actions in Γ−1(û) it is guaranteed that
H will eventually leave the region Γ−1(x̂). Otherwise, True is returned in line 7.

Algorithm 3 Self loop elimination

Input: DTLHS H = (X,U, Y,N), quantization Q = (A,Γ), abstract state x̂, abstract
action û.

function selfLoop(H,Q, x̂, û)
1. if ¬existsTrans(x̂, û, x̂) then return False

2. for xi in Xr do
3. wi ← optimalValue(min, x′

i − xi, N(X,U, Y,X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û ∧ Γ(X ′) = x̂)
4. if wi > 0 then return False

5. Wi ← optimalValue(max, x′
i−xi, N(X,U, Y,X ′)∧Γ(X) = x̂∧Γ(U) = û∧Γ(X ′) = x̂)

6. if Wi < 0 then return False

7. return True

6.6. Proof of Function selfLoop Correctness

In this section we prove correctness of Alg. 3. This section can be skipped at a first reading.

Proposition 6.7. Let H = (X,U, Y,N) be a DTLHS, Q = (A,Γ) be a quantization for
H, x̂ ∈ Γ(AX), and û ∈ Γ(AU). If the abstract self loop (x̂, û, x̂) has a concrete witness and
selfLoop(H,Q, x̂, û) returns False, then (x̂, û, x̂) is an eliminable self loop.

Proof. Suppose by absurd that the abstract self loop (x̂, û, x̂) has a concrete witness,
selfLoop(H,Q, x̂, û) returns False, and (x̂, û, x̂) is a non-eliminable self loop. Then there
exists an infinite run π = x0u0x1u1 . . . such that for all t ∈ N xt ∈ Γ−1(x̂) and ut ∈ Γ−1(û).

For i ∈ [|Xr|], let wi ≤ Wi be the values computed in lines 3 and 5 of Alg. 3, i.e. wi =
optimalValue(min, x′

i − xi, N(X,U, Y,X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û ∧ Γ(X ′) = x̂) and Wi =
optimalValue(max, x′

i − xi, N(X,U, Y,X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û ∧ Γ(X ′) = x̂).
Since selfLoop(H,Q, x̂, û) returns False, there exists at least an index j ∈ [|Xr|] such

that wj > 0 or Wj < 0 (see lines 4 and 6 of Alg. 3 resp.). Let us consider the former case
(note that wj > 0 implies Wj > 0).

For all k ∈ N, we have that |(xk)j − (x0)j | = (xk)j − (x0)j ≥ kwj . If we take k̃ >
‖γxj

‖

wj
,

we have that |(xk̃)j − (x0)j | > ‖γxj
‖ and hence xk̃ cannot belong to Γ−1(x̂).

Analogously, if wj ≤ Wj < 0 then we have that |(xk)j − (x0)j | = (x0)j − (xk)j ≥ kwj .

If we take k̃ >
‖γxj

‖

wj
, we have that |(xk̃)j − (x0)j | > ‖γxj

‖ and hence xk̃ cannot belong to

Γ−1(x̂).
In both cases we have a contradiction, thus the thesis is proved.

6.7. Proof of Functions minCtrAbs and minFullCtrAbs Correctness

In this section we prove correctness of functions minCtrAbs (Alg. 2) and minFullCtrAbs
used in Alg. 1. This section can be skipped at a first reading.

Proposition 6.8. Let H = (X,U, Y,N) be a DTLHS and Q = (A,Γ) be a quantization
for H.

If N̂ is the transition relation computed by minCtrAbs(H, Q) then Ĥ = (Γ(AX), Γ(AU),

N̂) is an admissible Q control abstraction of H.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:25

If N̂ is the transition relation computed by minFullCtrAbs(H, Q) then Ĥ = (Γ(AX),

Γ(AU), N̂) is a full Q control abstraction of H.

Proof. Here we prove only the part regarding function minCtrAbs, since the other
part may be proved analogously. We first show that the control abstraction Ĥ =
(Γ(AX),Γ(AU), N̂) satisfies conditions 1–3 of Def. 5.3.

(1) Each transition (x̂, û, x̂′) is added to N̂ in line 5 or in line 9 of Alg. 2. In both cases, it
has been checked by function existsTrans that ∃x ∈ Γ−1(x̂), u ∈ Γ−1(û), x′ ∈ Γ−1(x̂′),
y ∈ AY such that N(x, u, y, x′) (in the latter case the check is inside function selfLoop).

(2) Let x, s′ ∈ AX and u ∈ AU be such that ∃y : N(x, u, y, x′) and Γ(x) 6= Γ(x′). Since
minCtrAbs examines all tuples in Γ(AX)×Γ(AU)×Γ(AX), it will eventually examine the
tuple (x̂, û, x̂′) s.t. x̂ = Γ(x), û = Γ(u), and x̂′ = Γ(x′). If û is not Q-admissible in x̂ no

transition is added to N̂ because of the check in line 4. Otherwise, since ∃y : N(x, u, y, x′)

holds, existsTrans(x̂, û, x̂′) returns True and the transition (x̂, û, x̂′) is added to N̂ in
line 9 of Alg. 2.

(3) Note that condition 3 of Def. 5.3 may be rephrased as follows: if (x̂, û, x̂) is a non-

eliminable self loop, then N̂(x̂, û, x̂) must hold. That is, if N̂(x̂, û, x̂) = 0 then either
there is not a concrete witness for the self loop (x̂, û, x̂), or (x̂, û, x̂) is an eliminable
self loop. This is exactly the case for which function selfLoop(H,Q, x̂, û) returns False

(resp. by line 1 of Alg. 3 and by Prop. 6.7). Since a self loop (x̂, û, x̂) is not added

to N̂ only if selfLoop(H,Q, x̂, û) returns False in line 5 of Alg. 2, and since function
selfLoop(H,Q, x̂, û) is eventually invoked for all x̂ ∈ Γ(AX) and û ∈ Γ(AU), the thesis
is proved.

6.8. Proof of Synthesis Algorithm Correctness

In this section we prove Theor. 6.1. This section can be skipped at a first reading.

Proof Theorem 6.1. If function qCtrSyn returns (Sol, D̂, K̂), then function minC-

trAbs has found an admissible Q control abstraction M̂ of H (see Prop. 6.8) and func-

tion strongCtr has found the strong mgo K̂ to the control problem (M̂, Γ(I), Γ(G)). By
Theor. 5.9 (point 1) the controller K, defined by K(x, u) = (k(Γ(x)) = Γ(u)) with k control

law for K̂, is a Q QFC strong solution to the control problem (H, I, G).

If function qCtrSyn returns (NoSol, D̂, K̂), there is no weak solution to the control

problem (Ŵ , Γ(I), Γ(G)), where Ŵ is the close to minimum full control abstraction of H
computed by function minFullCtrAbs (Prop. 6.8). Therefore, by Theor. 5.9 (point 3) there
is no Q QFC solution to the control problem (H, I, G).

6.9. Details on Actions Admissibility Check

In this section we show how we can check for action admissibility. This section can be
skipped at a first reading.

In Sect. 6.4, for any pair (x̂, û) in Γ(AX)×Γ(AU) line 4 of Alg. 2 checks if û isQ-admissible
in x̂. This check is carried out by determining if the predicate P (X,U, Y,X ′, x̂, û) ≡
N(X,U, Y,X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û ∧X ′ 6∈ AX is not feasible.

Note that X ′ 6∈ AX is not a conjunctive predicate, thus feasibility of predicate P (X ,
U , Y , X ′, x̂, û) cannot be directly checked via function feasible. We implement such a
check by calling 2|X | times function feasible in the following way. For each x′ ∈ X ′,
let P−

x′ (X,U, Y,X ′, x̂, û) ≡ N(X,U, Y,X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û ∧ x′ ≤ inf Ax and

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:26 Federico Mari et al.

P+
x′ (X,U, Y,X ′, x̂, û) ≡ N(X,U, Y,X ′) ∧ Γ(X) = x̂ ∧ Γ(U) = û ∧ x′ ≥ supAx. For each

x′ ∈ X ′, we call function feasible on P+
x′ and P−

x′ separately. If all such 2|X | calls return
False, then P is not feasible, otherwise P is feasible.

Note that by Def. 5.3 we should also check that ∀x ∈ Γ−1(x̂) ∀u ∈ Γ−1(û) ∃x′ ∈ DX

∃y ∈ DY : N(x, u, y, x′). This cannot be checked via function feasible. We therefore perform
such a check by using a tool for quantifier elimination, namely Mjollnir [Monniaux 2010].
More in detail, we call Mjollnir only once, as a precomputation of Alg. 2, on the formula
Φ(x̂, û) ≡ ∃x ∈ DX ∃u ∈ DU Γ(X) = x̂ ∧ Γ(U) = û ∧ ¬[∃x′ ∈ DX ∃y ∈ DY : N(x, u, y, x′)].

The output of Mjollnir is a formula Φ̃(x̂, û) s.t. Φ̃(x̂, û) ≡ Φ(x̂, û) and Φ̃(x̂, û) does not

contain quantifiers (i.e., the only variables in Φ̃(x̂, û) are x̂ and û). Φ̃(x̂, û) is true if û is not

safe in x̂. Since Φ̃(x̂, û) only depends on bounded discrete variables, we may turn it into an

OBDD L̂. This is the last step of the precomputation. Then, we use L̂ as follows. Each time
that function Q-admissible (line 4 of Alg. 2) is invoked, it first checks if (x̂, û) ∈ L̂. If this
holds, then function Q-admissible directly returns False. Otherwise, the above described
check (involving at most 2|X | calls to function feasible) is performed.

7. CONTROL SOFTWARE GENERATION

In this section we describe how we synthesize the actual control software (C functions
Control_Law and Controllable_Region in Sect. 1) and show how we compute its WCET.
More details are given in [Mari et al. 2011a].

First, we note that given an OBDD B, we can easily generate a C function implementation
obdd2c(B) for the boolean function (defined by) B by implementing in C the semantics
of OBDD B. We do this by replacing each OBDD node with an if-then-else block and
each OBDD edge with a goto instruction. Let (µ, D̂, K̂) be the output of function qCtrSyn

in Alg. 1. We synthesize function Controllable_Region by computing obdd2c(D̂). As for
function Control_Law, let r (resp. n) be the number of bits used to represent plant actions
(resp. states). We compute [Tronci 1998] a boolean function F : Bn → B

r that, for each

quantized state x̂ in the controllable region D̂, returns a quantized action û such that
K̂(x̂, û) holds. Let Fi : Bn → B be the boolean function computing the i-th bit of F . That
is, F (x̂) = [F1(x̂), . . . , Fr(x̂)]. We take function Control_Law to be (the C implementation
of) [obdd2c(F1), . . . , obdd2c(Fr)].

7.1. Control Software WCET

We can easily compute the WCET for our control software. In fact all OBDDs we are con-
sidering have at most n variables. Accordingly, the execution of the resulting C code will
go through at most n instruction blocks consisting essentially of an if-then-else and a
goto statement. Let TB be the time needed to compute one such a block on the microcon-
troller hosting the control software. Then we have that the WCET of Controllable_Region
[Control_Law] is less than or equal to n · TB [r · n · TB]. Thus, neglecting I/O times, each
iteration of the control loop (see Fig. 1) takes time (control software WCET) at most
(r + 1) · n · TB. Note that a more strict upper bound for the WCET may be obtained by
taking into account OBDDs heights (which are by construction at most n). The control
loop (Fig. 1) poses the hard real time requirement that the control software WCET be less
than or equal to the sampling time T . This is the case when WCET ≤ T holds. Such an
equation allows us to know, before hand, the realizability of the foreseen control schema.

8. EXPERIMENTAL RESULTS

We implemented our QFC synthesis algorithm in C programming language, using GLPK
to solve MILP problems and the CUDD package for OBDD based computations. We

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:27

Table I. Buck DC-DC converter (Sect. 3): control abstraction & controller synthesis results. Part I.

Control Abstraction Controller Synthesis

b CPU MEM Arcs MaxLoops LoopFrac CPU |K|

8 1.95e+03 4.41e+07 6.87e+05 2.55e+04 0.00333 2.10e-01 1.39e+02
9 9.55e+03 5.67e+07 3.91e+06 1.87e+04 0.00440 2.64e+01 3.24e+03
10 1.42e+05 8.47e+07 2.61e+07 2.09e+04 0.00781 7.36e+01 1.05e+04
11 8.76e+05 1.11e+08 2.15e+08 2.26e+04 0.01435 2.94e+02 2.88e+04

Table II. Buck DC-DC converter
(Sect. 3): control abstraction &
controller synthesis results. Part II.

Total

b CPU MEM µ

8 1.96e+03 4.46e+07 Unk
9 9.58e+03 7.19e+07 Sol
10 1.42e+05 1.06e+08 Sol
11 8.76e+05 2.47e+08 Sol

name the resulting tool Quantized feedback Kontrol Synthesizer (QKS) (publicly available
at [QKS Web Page 2011]).

Our methods focus on centralized control software synthesis problems. Therefore we fo-
cus our experimental results on such cases. Distributed control problems (such as TCAS
[Platzer and Clarke 2009]), widely studied in a verification setting, are outside our scopes.

In this section we present our experiments that aim at evaluating effectiveness of: the
control abstraction generation, the synthesis of OBDD representation of control law, and
the control software size, performance, and guaranteed operational ranges (i.e. controllable
region). In Sects. 8.1, 8.2, and 8.3 we present results for the buck DC-DC converter case
study. In Sects. 8.4, 8.5, and 8.6 we shortly outline results for the inverted pendulum case
study. Note that control software reaction time (WCET) is known a priori from Sect. 7.1
and its robustness to parameter variations in the controlled system as well as enforcement
of safety bounds on state variables are an input to our synthesis algorithm (see Ex. 3.2 and
Sect. 8.1).

8.1. Buck DC-DC Converter: Experimental Settings

In this section (and in Sects. 8.2, 8.3) we present experimental results obtained by us-
ing QKS on a version of the buck DC-DC converter described in Sect. 3.1. Further case
studies (namely, the inverted pendulum and the multi-input buck DC-DC converter) can
be found in [Alimguzhin et al. 2012a] and [Alimguzhin et al. 2012b]. We denote with H =

(X,U, Ỹ , Ñ) the DTLHS modeling such a converter, where X,U are as in Sect. 3.1. We set
the parameters of H as follows: T = 10−6 secs, L = 2 · 10−4 H, rL = 0.1 Ω, rC = 0.1 Ω,
R = 5 ± 25% Ω, Roff = 104 Ω, C = 5 · 10−5 F, Vi = 15 ± 25% V. Thus, we require our
controller to be robust to foreseen variations (25%) in the load (R) and in the power supply

(Vi). To this aim, Ñ is obtained by extending N of Sect. 3.1 as follows. As for variations
in the power supply Vi, they are modeled analogously to Ex. 3.2. As for variations in the
load R, much more work is needed [Mari et al. 2011c] since H dynamics is not linear in
R. For the sake of brevity, we simply point out that modeling variations in the load R re-
quires 11 auxiliary boolean variables to be added to Y , thus obtaining Ỹ , and 15 (guarded)

constraints to be added to Ñ .
For converters, safety (as well as physical) considerations set requirements on admissible

values for state variables (admissible regions). We set AiL = [−4, 4] and AvO = [−1, 7]. We

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:28 Federico Mari et al.

Table III. Buck DC-DC converter: number of MILPs and time to solve them
(secs). Part I.

b = 8 b = 9

MILP Num Avg Time Num Avg Time

1 6.6e+04 7.0e-05 4.6e+00 2.6e+05 7.0e-05 1.8e+01
2 4.0e+05 1.5e-03 3.3e+02 1.6e+06 1.4e-03 1.1e+03
3 2.3e+05 9.1e-04 2.1e+02 9.2e+05 9.2e-04 8.4e+02
4 7.8e+05 9.9e-04 7.7e+02 4.4e+06 1.0e-03 4.5e+03
5 4.3e+05 2.8e-04 1.2e+02 1.7e+06 2.8e-04 4.9e+02

Table IV. Buck DC-DC converter: number of MILPs and time to solve them
(secs). Part II.

b = 10 b = 11

MILP Num Avg Time Num Avg Time

1 1.0e+06 2.7e-04 2.8e+02 4.2e+06 2.3e-04 9.7e+02
2 6.4e+06 3.8e-03 1.3e+04 2.5e+07 3.3e-03 4.6e+04
3 3.7e+06 3.0e-03 1.1e+04 1.5e+07 2.6e-03 3.8e+04
4 3.0e+07 2.6e-03 7.8e+04 2.6e+08 2.2e-03 5.7e+05
5 6.8e+06 1.8e-03 1.3e+04 2.7e+07 1.6e-03 4.2e+04

define A = AiL ×AvO ×Au. As for auxiliary variables, we use the following safety bounds:
Aiu = AiD = [−103, 103] and Avu = AvD = [−107, 107]. As a result, we add 12 further

constraints to Ñ stating that
∧

w∈{iL,vO,iu,iD ,vu,vD} w ∈ Aw, thus obtaining a bounded

DTLHS [Mari et al. 2011c].
Finally, the initial region I and goal region G are as in Ex. 4.7, thus the DTLHS control

problem we consider is P = (H, I, G). Note that no (formally proved) robust control
software is available for buck DC-DC converters.

We use a uniform quantization dividing the domain of each state variable (iL, vO) into 2b

equal intervals, where b is the number of bits used by AD conversion, thus w.r.t. Sect. 6.3 we
have that ∆iL = ∆vO = 2b. The resulting quantization is Qb = (A,Γb), with ‖Γb‖ = 23−b.
Since we have two quantized variables (iL, vO) each one with b bits, the number of states
in the control abstraction is exactly 22b.

For each value of interest for b, we run QKS, and thus Alg. 1, on the control problem
(H, I, G) with quantization Qb. In the following, we will call M̂b the close to minimum

(admissible) Qb control abstraction for H, Ĥb the maximum (full) Qb control abstraction

forH (which we compute for statistical reasons also when Alg. 1 returns Sol), K̂b the strong

mgo for P̂b = (M̂b, ∅, Γb(G)), D̂b = Dom(K̂b) the controllable region of K̂b, and Kb(s, u) =

K̂b(Γb(s),Γb(u)) the Qb QFC solution to Pb = (H, Γ−1
b (D̂b), G). All our experiments have

been carried out on a 3.0 GHz Intel hyperthreaded Quad Core Linux PC with 8 GB of
RAM.

8.2. Buck DC-DC Converter: QKS Performance

In this section we will show the performance (in terms of computation time and memory)
of algorithms discussed in Sect. 6.

Tabs. I, II, III and IV show our experimental results for QKS (and thus for Alg. 1).
Columns in Tab. I have the following meaning. Column b shows the number of AD bits.
Columns labeled Control Abstraction show performance for Alg. 2 (computation of M̂b)
and they show running time (column CPU, in secs), memory usage (MEM, in bytes), the

number of transitions in M̂b (Arcs), the number of self loops in Ĥb (MaxLoops), and the

fraction of self loops that are kept in M̂b w.r.t. the number of self loops in Ĥb (LoopFrac).

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:29

216

230

245

8 9 10 11

24b+1

#MILP4
22b+1

Fig. 7. Buck DC-DC Con-
verter: Number of MILP4 calls.

0

0.002

0.004

8 9 10 11
0

0.002

0.004

8 9 10 11

MILP1
MILP2
MILP3
MILP4
MILP5

Fig. 8. Buck DC-DC Con-
verter: Average of MILP calls.

Fig. 9. Buck DC-DC Converter:
Controlled region with b = 10 bits.

Columns labeled Controller Synthesis show the computation time (column CPU, in secs) for

the generation of K̂b, and the size of its OBDD representation (|K|, number of nodes). The

latter is also the size (number of lines) of K̂b C code synthesized implementation. Columns
in Tab. II have the following meaning. Column b shows the number of AD bits. Columns
labeled Total show the total computation time (column CPU, in secs) and the memory
(MEM, in bytes) for the whole process (i.e., control abstraction plus controller source code
generation), as well as the final outcome µ ∈ {Sol, NoSol, Unk} of Alg. 1.

From Tabs. I and II we see that computing control abstractions (i.e. Alg. 2) is the most

expensive operation in QKS and that thanks to function SelfLoop M̂b contains no more
than 2% of the loops in Ĥb.

8.2.1. MILP problems Analysis. For each MILP problem solved in QKS, Tabs. III and IV show
(as a function of b) the total and the average CPU time (in seconds) spent solving MILP
problems, together with the number of MILP problems solved, divided by different kinds of
MILP problems as follows. MILP1 refers to the MILP problems described in Sect. 6.3, i.e.
those computing the quantization for I and G, MILP2 refers to MILP problems in function
SelfLoop (see Alg. 3), MILP3 refers to the MILP problems used in function overImg (line 6
of Alg. 2), MILP4 refers to MILP problems used to check actions admissibility (line 8 of
Alg. 2), and MILP5 refers to MILP problems used to check transitions witnesses (line 4 of
Alg. 2). Columns in Tabs. III and IV have the following meaning: Num is the number of
times that the MILP problem of the given type is called, Time is the total CPU time (in
secs) needed to solve all the Num instances of the MILP problem of the given type, and
Avg is the average CPU time (in secs), i.e. the ratio between columns Time and Num.

CPU time standard deviation is always less than 0.003.
Fig. 7 graphically shows (as a function of b) the number of MILP4 instances solved

(column Num of columns group MILP4 in Tabs. III and IV).
From Tabs. III and IV, column Avg, we see that the average time spent solving each MILP

instance is small. Fig. 8 graphically shows that MILP average computation time does not
heavily depend on b. As observed in Remark 6.5, Fig. 7 shows that the number of MILP4
invocations is much closer to |Γ(AX)||Γ(AU)| = 22b+1, rather than the theoretical worst
case running time |Γ(AX)|2|Γ(AU)| = 24b+1 of Alg. 2. This shows effectiveness of function
overImg heuristic.

8.3. Buck DC-DC Converter: Control Software Performance

In this section we discuss the performance of the generated controller. Fig. 10 shows a
snapshot of the QKS synthesized control software for the Buck DC-DC converter when 10
bits (b = 10) are used for AD conversion.

8.3.1. Controllable Region. One of the most important features of our approach is that it
returns the guaranteed operational range (precondition) of the synthesized software (Theor.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:30 Federico Mari et al.

int Controllable_Region(int *x) {
int ret_b = 0;
L_2af64a1: i f (x[2] == 1) goto L_2b001e0;

else { ret_b = !ret_b; goto L_2afff40; }
L_21f95e0: return ret_b;
L_2b07f00: i f (x[14] == 1) goto L_21f95e0;

else goto L_2b07ee0;
/* ... */

}

int Control_Law(int *x, int *u) {
int i;
for(i = 0; i < 1; i++)

u[i] = Aux_Bits (x,i);
return 0;

}

int Aux_Bits (int *x, int b) {
int ret_b;
switch(b){ case 0: ret_b = 0; goto L_2af6081; }
L_2af6081: i f (x[2] == 1) goto L_2a6d2e0;

else { ret_b = !ret_b; goto L_2af6060; }
L_21f95e0: return ret_b;
/* ... */

}

Fig. 10. A snapshot of the synthesized control software for the Buck DC-DC converter with 10 bit AD
conversion.

 0

 1

 2

 3

 4

 5

 6

 0 5e-05 0.0001 0.00015 0.0002 0.00025

9 bits
10 bits
11 bits

MOSFET 11 bits

(a) vO from iL = 0, vO = 0

 4.992

 4.994

 4.996

 4.998

 5

 5.002

 5.004

 5.006

 5.008

 5.01

 0.0004 0.00045 0.0005 0.00055 0.0006 0.00065 0.0007 0.00075 0.0008

11 bits

(b) Ripple for vO (b = 11)

Fig. 11. Controller performances for the Buck DC-DC Converter: setup time and ripple.

6.1). This is the controllable region D̂ returned by Alg. 1. In our case study, 9 bit turns out
to be enough to have a controllable region that covers the initial region [Mari et al. 2011c].
Increasing the number of bits, we obtain even larger controllable regions. Fig. 9 shows
the controllable region D10 = Γ−1

10 (D̂10) for K10 along with some trajectories (with time
increasing counterclockwise) for the closed loop system. We see that the initial region I ⊆
D10. Thus we know (on a formal ground) that 10 bit AD conversion suffices for our purposes.
More details on controllable region visualization can be found in [Mari et al. 2012a].

8.3.2. Setup Time and Ripple. Our model based control software synthesis approach presently
does not handle quantitative liveness specifications. Accordingly, quantitative system level
formal specifications have to be verified a posteriori. This can be done using a classical
Hardware-In-the-Loops (HIL) simulation approach or, even better, following a formal ap-

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:31

proach, as discussed in [Henzinger 2010; Hermanns et al. 2010]. In our context HIL simu-
lation is quite easy since we already have a DTLHS model for the plant and the control
software is generated automatically.

To illustrate such a point in this section we highlight HIL simulation results for two
quantitative specifications typically considered in control systems: Setup Time and Ripple.

The setup time measures the time it takes to reach the goal (steady state) when the
system is turned on. Fig. 11(a) shows trajectories starting from point (0, 0) for K9, K10 and
K11 as well as the control command sent to the MOSFET (square wave in Fig. 11(a)) for
K11. Note that all trajectories stabilize (steady state) after only 0.0003 secs (setup time).

The ripple measures the wideness of the oscillations around the goal (steady state) once
this has been reached. Fig. 11(b) shows the ripple for the output voltage after stabilization.
For K11 we see that the ripple is about 0.01 V, that is 0.2% of the reference value Vref = 5
V.

It is worth noticing that both setup time and ripple compare well with typical figures of
commercial high-end buck DC-DC converters (e.g. see [Texas Instruments 2001]) and with
the results available from the literature (e.g. [So et al. 1996; Yousefzadeh et al. 2008]).

8.4. Inverted Pendulum: Experimental Settings

In this section (and in Sects. 8.5, 8.6) we present experiment results obtained by using
QKS on the inverted pendulum described in [Kreisselmeier and Birkhölzer 1994], as shown

in Fig. 12. The system is modeled by taking the angle θ and the angular velocity θ̇ as state
variables. The input of the system is the torquing force u, that can influence the velocity in
both directions. Moreover, the behaviour of the system depends on the pendulum mass m,
the length of the pendulum l and the gravitational acceleration g. Given such parameters,
the motion of the system is described by the differential equation θ̈ = g

l
sin θ + 1

ml2
u.

In order to obtain a state space representation, we consider the following normalized
system, where x1 is the angle θ and x2 is the angular speed θ̇.

ẋ1 = x2 (11)

ẋ2 =
g

l
sinx1 +

1

ml2
u (12)

Differently from [Kreisselmeier and Birkhölzer 1994], we consider the problem of finding
a discrete controller, whose decisions may be “apply the force clockwise” (u = 1), “apply the
force counterclockwise” (u = −1), or “do nothing” (u = 0). The intensity of the force will
be given as a constant F . Finally, the discrete time transition relation N is obtained from

Fig. 12. Inverted Pendulum
with Stationary Pivot Point.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1 0 1 2 3

x 2

x1

Fig. 13. Inverted Pendulum: Controlled region with
b = 9 bits, F = 0.5, T = 0.1.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:32 Federico Mari et al.

Table V. Inverted Pendulum: control abstraction & controller
synthesis results with F = 0.5.

b T ρ |K| CPU MEM

8 0.1 0.1 2.73e+04 2.56e+03 7.72e+04
9 0.1 0.1 5.94e+04 1.13e+04 1.10e+05
10 0.1 0.1 1.27e+05 5.39e+04 1.97e+05
11 0.01 0.05 4.12e+05 1.47e+05 2.94e+05

the equations (11-12) as the Euler approximation with sampling time T , i.e. the predicate
(x′

1 = x1 + Tx2) ∧ (x′
2 = x2 + T g

l
sinx1 + T 1

ml2
Fu).

Since the system whose dynamics are in equations (11-12) is not linear, we build a linear
over-approximation of it as shown in [Alimguzhin et al. 2012a]. The result is the DTLHS H
defined in Ex. 5 of [Alimguzhin et al. 2012a]. From now on we use H to denote the inverted
pendulum system.

In all our experiments, as in [Kreisselmeier and Birkhölzer 1994], we set parameters l and
m in such a way that g

l
= 1 (i.e. l = g) and 1

ml2
= 1 (i.e. m = 1

l2
). Moreover, we set the

force intensity F = 0.5. More experiments can be found in [Alimguzhin et al. 2012a].
As we have done for the buck DC-DC converter, we use uniform quantization functions

dividing the domain of each state variable Dx1
= [−1.1π, 1.1π] (we write π for a rational

approximation of it) and Dx2
= [−4, 4] into 2b equal intervals, where b is the number of bits

used by AD conversion. Since we have two quantized variables, each one with b bits, the
number of quantized states is exactly 22b.

The typical goal for the inverted pendulum is to turn the pendulum steady to the upright
position, starting from any possible initial position, within a given speed interval. In our
experiments, the goal region is defined by the predicate G(X) ≡ (−ρ ≤ x1 ≤ ρ) ∧ (−ρ ≤
x2 ≤ ρ), where ρ ∈ {0.05, 0.1}, and the initial region is defined by the predicate I(X) ≡
(−π ≤ x1 ≤ π) ∧ (−4 ≤ x2 ≤ 4).

We run QKS on the control problem (H, I, G) for different values of the remaining pa-
rameters, i.e. ρ (goal tolerance), T (sampling time), and b (number of bits of AD). For
each of such experiments, QKS outputs a control software K in C language. In the follow-
ing, we sometimes make explicit the dependence on b by writing Kb. In order to evaluate
performance of K, we use an inverted pendulum simulator written in C. The simulator
computes the next state by using Eqs. (11-12), thus simulating a path of H(K). Such sim-
ulator also introduces random disturbances (up to 4%) in the next state computation to
assess K robustness w.r.t. non-modeled disturbances. Finally, in the simulator Eqs. (11-12)
are translated into the discrete time version by means of a simulation time step Ts much
smaller than the sampling time T used in H. Namely, Ts = 10−6 seconds, whilst T = 0.01
or T = 0.1 seconds. This allows us to have a more accurate simulation. Accordingly, K is
called each 104 (or 105) simulation steps of H. When K is not called, the last chosen action
is selected again (sampling and holding).

All experiments for the inverted pendulum have been carried out on an Intel(R) Xeon(R)
CPU @ 2.27GHz, with 23GiB of RAM, Debian GNU/Linux 6.0.3 (squeeze).

8.5. Inverted Pendulum: QKS Performance

To stabilize an underactuated inverted pendulum (i.e. F < 1) from the hanging posi-
tion to the upright position, a controller needs to find a non obvious strategy that con-
sists of swinging the pendulum once or more times to gain enough momentum. QKS
is able to synthesize such a controller taking as input H with F = 0.5 (note that
in [Kreisselmeier and Birkhölzer 1994] F = 0.7). Results are in Tab. V, where each row
corresponds to a QKS run, columns b, T and ρ show the corresponding inverted pendu-
lum parameters, column |K| shows the size of the C code for Kb, and columns CPU and

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:33

MEM show the computation time (in seconds) and RAM usage (in KB) needed by QKS to
synthesize Kb.

8.6. Inverted Pendulum: Control Software Performance

As for Kb performance, it is easy to show that by reducing the sampling time T and the
quantization step (i.e. increasing b), we increase the quality of Kb in terms of ripple and
set-up time. Fig. 14(a) shows the simulations of H(K9) and H(K10). As we can see, K10

drives the system to the goal with a smarter trajectory, with one swing only. This have
a significant impact on the set-up time (the system stabilizes after about 8 seconds when
controlled by K10 instead of about 10 seconds required when controlled by K9). Fig. 13
shows that the controllable region of K9 covers almost all states in the admissible region
that we consider. Different colors mean different set of actions enabled by the controller.
Finally, Fig. 14(b) shows the ripple of x1 for H(K10) inside the goal. Note that such ripple
is very low (0.018 radiants).

9. RELATED WORK

This paper is a journal version of [Mari et al. 2010] which is extended here by providing
omitted proofs and algorithms.

Sect. 9.1 compares our contribution with related work on control software synthesis from
system level formal specifications. For the sake of completeness, Sect. 9.2 expands such a
comparison to recent results on (non control) software synthesis from formal specifications,
focusing on papers using techniques related to ours (constraint solving, OBDD, supervisory
control [Ramadge and Wonham 1987]). Sect. 9.3 describes Tab. VI, which summarizes the
novelty of our contribution with respect to automatic methods for control software synthesis.

9.1. Control Software Synthesis from System Level Formal Specifications

Control Engineering has been studying control law design (e.g., optimal control, robust
control, etc.) for more than half a century (e.g., see [Brogan 1991]). As explained in Sect. 1.1
such results cannot be directly used in our (formal) software synthesis context. On the other
hand we note that there are many control systems that are not software based (e.g., in analog
circuit design). In such cases, of course, our approach cannot be used.

9.1.1. Control of Linear and Switched Hybrid Systems. The paper closer to our is
[Kreisselmeier and Birkhölzer 1994] which studies the problem of control synthesis for dis-
crete time hybrid systems. However, while we present an automatic method, the approach

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14

time in seconds

angle [x1] 10 bits
angle [x1] 9 bits

(a) x1 from x1 = π, x2 = 0

-0.102

-0.1

-0.098

-0.096

-0.094

-0.092

-0.09

-0.088

-0.086

-0.084

 20 30 40 50 60 70 80 90 100

time in seconds

(b) Ripple for x1 (b = 10)

Fig. 14. Controller performances for the Inverted Pendulum with F = 0.5, b = 9, 10: setup time and ripple.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:34 Federico Mari et al.

in [Kreisselmeier and Birkhölzer 1994] is not automatic since it requires the user to provide
a suitable Lyapunov function (a far from trivial task even for linear hybrid systems).

Quantized Feedback Control has been widely studied in control engineering (e.g. see
[Fu and Xie 2005]). However such research addresses linear systems (not the general case of
hybrid systems) and focuses on control law design rather than on control software synthesis
(our goal). Furthermore, all control engineering approaches model quantization errors as
statistical noise. As a result, correctness of the control law holds in a probabilistic sense.
Here instead, we model quantization errors as nondeterministic (malicious) disturbances.
This guarantees system level correctness of the generated control software (not just that of
the control law) with respect to any possible sequence of quantization errors.

Control software synthesis for continuous time linear systems has been widely studied (e.g.
see [Brogan 1991]). However such research does not account for quantization. Control soft-
ware synthesis for continuous time linear systems with quantization has been investigated in
[Mazo and Tabuada 2011]. This paper presents an automatic method which, taking as input
a continuous time linear system and a goal specification, produces a control law (represented
as an OBDD) through Pessoa [Mazo et al. 2010]. While [Mazo and Tabuada 2011] applies
to (continuous time) linear systems, our contribution focuses on (discrete time) linear hybrid
systems (DTLHSs). Furthermore, although taking into account the quantization process,
[Mazo and Tabuada 2011] does not supply an effective method to generate control software
(as we do in Sect. 6.1). As a consequence [Mazo and Tabuada 2011] gives no guarantee on
WCET, an important issue since an SBCS is a hard real-time system.

[Girard et al. 2010] presents a method to find an over-approximation of switched systems,
under certain stability hypotheses. A switched system is a hybrid system whose mode tran-
sitions only depend on control inputs. Such a line of research goes back to [Pola et al. 2007]
which presents a method to compute symbolic models for nonlinear control systems. In
combination with [Mazo and Tabuada 2011], such results provide a semi-automatic method
for the construction of a control law for switched and nonlinear systems. However, we note
that nonlinear systems in [Pola et al. 2007] are not hybrid systems, since they cannot handle
discrete variables. Moreover, while a switched system as in [Girard et al. 2010] is a linear
hybrid system the converse is false since in a linear hybrid system mode transitions can be
triggered by state changes (without any change in the input). For example, our approach can
synthesize controllers both for the buck DC-DC converter of Fig. 3 (a linear hybrid system)
and for the boost DC-DC converter in [Girard et al. 2010] (a switched system). However,
the approach in [Girard et al. 2010] cannot handle the buck DC-DC converter of Fig. 3 be-
cause of the presence of the diode which triggers state dependent mode changes. Moreover,
[Mazo and Tabuada 2011] combined with [Girard et al. 2010] and [Pola et al. 2007] provide
semi-automatic methods since they rely on a Lyapunov function provided by the user, much
in the spirit of [Kreisselmeier and Birkhölzer 1994].

9.1.2. Control of Timed Automata and Linear Hybrid Automata. When the plant model
is a Timed Automaton (TA) [Alur and Madhusudan 2004; Maler et al. 1992] the
reachability and control law synthesis problems have both been widely stud-
ied. Examples are in [Larsen et al. 1997; Cassez et al. 2005; Maler et al. 2007;
Asarin and Maler 1999; Peter et al. 2011] and citations thereof. When the plant model
is a Linear Hybrid Automaton (LHA) [Alur et al. 1995; Alur et al. 1996] reachability and
existence of a control law are both undecidable problems [Henzinger and Kopke 1997;
Henzinger et al. 1998]. This, of course, has not prevented devising effective (semi) al-
gorithms for such problems. Examples are in [Alur et al. 1996; Henzinger et al. 1997;
Frehse 2008; Wong-Toi 1997; Benerecetti et al. 2011]. Much in the same spirit here we
give necessary and sufficient constructive conditions for control software existence. Note
that none of the above mentioned papers address control software synthesis since they all

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:35

assume exact (i.e. real valued) state measures (that is, state feedback quantization is not
considered).

Continuous-time linear hybrid systems with time delays and given precision
of state measurement, Lazy Linear Hybrid Automaton (LLHA), have been studied in
[Agrawal and Thiagarajan 2005]. The reachability problem is shown to be undecidable for
LLHAs in [Agrawal et al. 2006]. Note that such results do not directly apply to our context
(Theorem 4.16) since we are addressing discrete-time systems.

9.1.3. Control of Piecewise Affine and Nonlinear Hybrid Systems. Finite horizon control of
Piecewise Affine Discrete Time Hybrid Systems (PWA-DTHS) has been studied using a
MILP based approach. See, for example, [Bemporad and Giorgetti 2004]. PWA-DTHSs
form a strict subclass of DTLHSs since PWA-DTHS cannot handle linear constraints con-
sisting of discrete state variables whereas DTLHSs can. Such approaches cannot be directly
used in our context since they address synthesis of finite horizon controllers and do not
account for quantization.

Much in the spirit of [Kreisselmeier and Birkhölzer 1994], [Della Penna et al. 2008]
presents an explicit control synthesis algorithm for discrete time (possibly nonlinear)
hybrid systems, by avoiding the needs of providing Lyapunov functions. Moreover,
[Della Penna et al. 2009] presents control synthesis algorithms for discrete time hybrid sys-
tems cast as universal planning problems. Such approaches cannot be directly used in our
context since they do not account for quantization.

Hybrid Toolbox [Bemporad 2004] considers continuous time piecewise affine systems.
Such a tool outputs a feedback control law that is then passed to Matlab in order to
generate control software. We note that such an approach does not account for state feed-
back quantization and thus, as explained in Sect. 1.1, does not offer any formal guarantee
about system level correctness of the generated software, which is instead our focus here.

Using the engine proposed in this paper and computing suitable over-approximations of
nonlinear functions, it is possible to address synthesis for nonlinear hybrid systems as done
in [Alimguzhin et al. 2012a].

9.1.4. Software Synthesis in a Finite Setting. Correct-by-construction software synthesis in a fi-
nite state setting has been studied, for example, in [Tronci 1997; Tronci 1998; Tronci 1999b;
Tronci 1999a]. An automatic method for the generation of supervisory controllers for finite
state systems is presented in [Tronci 1996]. Control software synthesis in non-deterministic
finite domains is studied in [Cimatti et al. 1998] (cast as a universal planning problem).
Such approaches cannot be directly used in our context since they cannot handle continu-
ous state variables.

In Sect. 6.1 we presented our QFC synthesis algorithm (Alg. 1). Line 3 of Alg. 1
calls function strongCtr (implementing a variant of the algorithm in [Cimatti et al. 1998])
in order to compute a time optimal controller for the finite state quantized system.
[Alimguzhin et al. 2012b] presents a method to obtain a compressed non time optimal con-
troller for a finite state system. This is done by trading the size of the synthesized con-
troller with time optimality while preserving closed loop performances (Remark 6.3). Such
a method can be implemented in function strongCtr. Thus, [Alimguzhin et al. 2012b] is not
an improvement to the present paper but it is a contribution on controller synthesis for
finite state systems.

9.1.5. Switching Logic. Optimal switching logic for hybrid systems has been also widely in-
vestigated. For example, see [Taly et al. 2009; Jha et al. 2010; Jha et al. 2011] and citations
thereof. Such approaches, by ignoring the quantization process, indeed focus on the control
law design (see Sect. 1.1). However we note that [Jha et al. 2010; Jha et al. 2011] address
dwell-time and optimality issues which are not covered by our approach.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:36 Federico Mari et al.

9.1.6. Abstraction. Quantization can be seen as a sort of abstraction (the reason
for the name control abstraction), which has been widely studied in a hybrid sys-
tem formal verification context (e.g., see [Alur et al. 2000; Alur et al. 2006; Tiwari 2008;
Sankaranarayanan and Tiwari 2011]). Note however that in a verification context abstrac-
tions are designed so as to ease the verification task whereas in our setting quantization is a
design requirement since it models a hardware component (AD converter) which is part of
the specification of the control software synthesis problem. Indeed, in our setting, we have
to design a controller notwithstanding the nondeterminism stemming from the quantization
process. As a result, the techniques used to devise clever abstractions in a verification set-
ting cannot be directly used in our synthesis setting where the quantization to be used is
given.

9.2. Software Synthesis from Formal Specifications

Much as control software synthesis, also software synthesis has been widely stud-
ied since a long time in many contexts. For examples, see [Pnueli and Rosner 1989a;
Pnueli and Rosner 1989b; Schewe and Finkbeiner 2006; Girault and Rutten 2009]. We give
a glimpse of recent results on (non control) software synthesis approaches using techniques
related to ours (constraint solving, OBDD, supervisory control).

[Attie et al. 2004] shows how to mechanically synthesize fault-tolerant concurrent pro-
grams for various fault classes. [Srivastava et al. 2010] presents a method that synthe-
sizes a program, if there exists one, that meets the input/output specification and uses
only the given resources. [Gulwani et al. 2011] addresses the problem of synthesizing
loop-free programs starting from logical relations between input and output variables.
[Srivastava et al. 2011] proposes a synthesis technique and applies it to the inversion of
imperative programs (e.g., such as insert/delete operations, compressors/decompressors).
[Cerný et al. 2011] presents a method for the quantitative, performance-aware synthesis of
concurrent programs. Procedures and tools for the automated synthesis of code fragments
are also proposed in [Kuncak et al. 2012; Gvero et al. 2011; Kuncak et al. 2010].

Such approaches build on techniques (constraint solving, OBDD, supervisory control)
related to ours, but do not address control software synthesis from system level formal
specifications.

9.3. Summary

Tab. VI summarizes the novelty of our contribution with respect to automatic methods
for control software synthesis (our focus here). For this reason, it only considers papers
addressing control software synthesis. Namely, those in Sect. 9.1 but the ones focusing on
abstraction (since Sect. 9.2 results do not address control software synthesis).

Tab. VI is organized as follows. Each row refers to a citation. Each column represents
a feature of a cited work. A bullet in a cell means that the citation in the cell row has
the feature in the cell column. Where the feature is missing, the cell is empty. The group
of columns labeled T denotes whether the input model is expressed in continuous time or
discrete time. The group of columns labeled Input System lists the kind of input models we
are interested in. Namely: finite state, linear, switched, piecewise affine, TA or LHA, linear
hybrid sys., nonlinear, nonlinear hybrid sys. Note that the combination of columns linear
hybrid sys. and discrete time denotes our class of DTLHSs. The column labeled Quantiza-
tion denotes that the row supplies the quantization process. The group of columns labeled
K lists the output controller characteristics we are interested in. In particular: Formally ver-
ified denotes if the output controller is guaranteed to satisfy the given input specification;
Control software indicates if the presented method outputs a control software implementa-
tion; Guaranteed WCET denotes if the output controller has a guaranteed WCET. Finally,
the group of columns labeled Impl considers implementation issues, namely if a method
is fully automatic or semi automatic, and if there exists a tool available implementing the

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:37

Table VI. Summary of Related Work. ‘•’ stands for ‘Yes’. An empty cell means that feature is not supported.

Citation T Input System K Impl

C
o
n
ti
n
u
o
u
s

ti
m

e

D
is

cr
et

e
ti
m

e

F
in

it
e

st
a
te

L
in

ea
r

S
w

it
ch

ed

T
A

,
L
H

A

P
ie

ce
w

is
e

a
ffi

n
e

L
in

ea
r

h
y
b
ri
d

sy
s.

N
o
n
li
n
ea

r

N
o
n
li
n
ea

r
h
y
b
ri
d

sy
s.

Q
u
a
n
ti
za

ti
o
n

F
o
rm

a
ll
y

v
er

ifi
ed

C
o
n
tr

o
l
S
o
ft
w

a
re

G
u
a
ra

n
te

ed
W

C
E

T

F
u
ll
y

a
u
to

m
a
ti
c

S
em

i
a
u
to

m
a
ti
c

T
o
o
l
av

a
il
a
b
le

[Mari et al. 2010] and this paper • • • • • • • • • • • •

[Alimguzhin et al. 2012a] • • • • • • •
[Alimguzhin et al. 2012b] • • • • • • •
[Asarin and Maler 1999] • • • •
[Bemporad 2004] • • • • •
[Bemporad and Giorgetti 2004] • • •
[Benerecetti et al. 2011] • • • • •
[Cassez et al. 2005] • • • •
[Cimatti et al. 1998] • • • • • •
[Della Penna et al. 2008] • • • • • • • • • •
[Della Penna et al. 2009] • • • • • • • •
[Fu and Xie 2005] • • •
[Girard et al. 2010] • • • • •
[Jha et al. 2010] • • • •
[Jha et al. 2011] • • • •
[Kreisselmeier and Birkhölzer 1994] • • • • • •
[Larsen et al. 1997] • • • •
[Maler et al. 2007] • • • •
[Mazo and Tabuada 2011] • • • • • •
[Peter et al. 2011] • • • • • •
[Pola et al. 2007] • • • • •
[Taly et al. 2009] • • • •
[Tronci 1996] • • • • •
[Tronci 1997] • • • • •
[Tronci 1998] • • • • •
[Tronci 1999b] • • • • •
[Tronci 1999a] • • • • •
[Wong-Toi 1997] • • • •

presented method. Note that [Girard et al. 2010] and [Pola et al. 2007] in Tab. VI represent
their combination with [Mazo and Tabuada 2011].

Summing up, to the best of our knowledge, no previously published result is available
about fully automatic generation (with a tool available) of correct-by-construction control
software with a guaranteed WCET from a DTLHS model of the plant, system level formal
specifications and implementation specifications (quantization, that is number of bits in AD
conversion).

10. CONCLUSIONS

We presented an algorithm and a tool QKS implementing it, to support a Formal Model
Based Design approach to control software. Our tool takes as input a formal DTLHS model
of the plant, implementation specifications (namely, number of bits in AD conversion), and
system level formal specifications (namely, safety and liveness properties for the closed loop
system). It returns as output a correct-by-construction C implementation (if any) of the
control software (namely, Control_Law and Controllable_Region) with a WCET guaran-
teed to be linear in the number of bits of the quantization schema. We have shown feasibility

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

6:38 Federico Mari et al.

of our proposed approach by presenting experimental results on using it to synthesize C
controllers for the buck DC-DC converter and the inverted pendulum.

In order to speed-up the computation and to avoid possible numerical errors due to MILP
solvers [Neumaier and Shcherbina 2004], a natural possible future research direction is to
investigate fully symbolic control software synthesis algorithms based on efficient quantifier
elimination procedures (e.g., see [Monniaux 2010] and citations thereof).

ACKNOWLEDGMENT

We gratefully acknowledge partial support from FP7 projects GA218815 (ULISSE), 317761 (SmartHG),
600773 (PAEON) and MIUR project DM24283 (TRAMP).

ACRONYMS

AD. Analog-to-Digital. 1–3, 9, 10, 19, 21, 25, 26, 43
COBDD. OBDD with complemented edges. 45–48
DA. Digital-to-Analog. 1, 2, 9
DTLHS. Discrete Time Linear Hybrid System. 3, 5–19, 22–26, 34–38, 40, 41, 43, 46,
48–50, 52
DVFS. Dynamic Voltage and Frequency Scaling. 6
HIL. Hardware-In-the-Loop. 22
LHA. Linear Hybrid Automaton. 23, 25
LLHA. Lazy Linear Hybrid Automaton. 24
LTS. Labeled Transition System. 5–8, 10–15, 31, 33, 34, 38–41, 46, 52
MILP. Mixed Integer Linear Programming. 3–5, 15, 16, 18–21, 24, 27, 43
NDTCM. Non-Deterministic Two-Counter Machine. 36
OBDD. Ordered Binary Decision Diagram. 14, 15, 17–19, 22, 23, 25, 33, 44, 45
PWA-DTHS. Piecewise Affine Discrete Time Hybrid Systems. 24
QFC. Quantized Feedback Control. 10, 12–15, 18, 19, 24, 34, 37, 43
QKS. Quantized feedback Kontrol Synthesizer. 3, 18–21, 26
SBCS. Software Based Control System. 1, 2, 23
TA. Timed Automaton. 23, 25
WCET. Worst Case Execution Time. 2, 3, 17, 18, 23, 25, 26, 46, 48

REFERENCES

Agrawal, M., Stephan, F., Thiagarajan, P. S., and Yang, S. 2006. Behavioural approximations for
restricted linear differential hybrid automata. In Proceedings of Hybrid Systems: Computation and
Control, 9th International Workshop, HSCC, J. P. Hespanha and A. Tiwari, Eds. Lecture Notes in
Computer Science Series, vol. 3927. Springer, 4–18.

Agrawal, M. and Thiagarajan, P. S. 2005. The discrete time behavior of lazy linear hybrid automata.
In Proceedings of Hybrid Systems: Computation and Control, 8th International Workshop, HSCC,
M. Morari and L. Thiele, Eds. Lecture Notes in Computer Science Series, vol. 3414. Springer, 55–69.

Alimguzhin, V., Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2012a. Automatic control software
synthesis for quantized discrete time hybrid systems. In Conference on Decision and Control, CDC.
To Appear. A preliminary version can be found at http://arxiv.org/abs/1207.4098 .

Alimguzhin, V., Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2012b. On model based synthesis of
embedded control software. In International Conference on Embedded Software, EMSOFT. To Appear.
A preliminary version can be found at arxiv.org.

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X., Oliv-
ero, A., Sifakis, J., and Yovine, S. 1995. The algorithmic analysis of hybrid systems. Theoretical
Computer Science 138, 1, 3 – 34.

Alur, R., Dang, T., and Ivančić, F. 2006. Predicate abstraction for reachability analysis of hybrid
systems. ACM Trans. on Embedded Computing Sys. 5, 1, 152–199.

Alur, R., Henzinger, T., Lafferriere, G., and Pappas, G. 2000. Discrete abstractions of hybrid
systems. Proceedings of the IEEE 88, 7, 971–984.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

http://arxiv.org/abs/1207.4098
arxiv.org

QFC Software Synthesis from Formal Specifications 6:39

Alur, R., Henzinger, T. A., and Ho, P.-H. 1996. Automatic symbolic verification of embedded systems.
IEEE Trans. Softw. Eng. 22, 3, 181–201.

Alur, R. and Madhusudan, P. 2004. Decision problems for timed automata: A survey. In SFM. LNCS
3185. 1–24.

Asarin, E. and Maler, O. 1999. As soon as possible: Time optimal control for timed automata. In HSCC.
LNCS 1569. 19–30.

Attie, P. C., Arora, A., and Emerson, E. A. 2004. Synthesis of fault-tolerant concurrent programs.
ACM Transactions on Programming Languages Systems (TOPLAS) 26, 1, 125–185.

Bemporad, A. 2004. Hybrid Toolbox. http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/.

Bemporad, A. and Giorgetti, N. 2004. A sat-based hybrid solver for optimal control of hybrid systems.
In HSCC. LNCS 2993. 126–141.

Benerecetti, M., Faella, M., and Minopoli, S. 2011. Revisiting synthesis of switching controllers for
linear hybrid systems. In Decision and Control and European Control Conference (CDC-ECC), 2011
50th IEEE Conference on. 4753 –4758.

Brogan, W. L. 1991. Modern control theory (3rd ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Bryant, R. 1986. Graph-based algorithms for boolean function manipulation. IEEE Trans. on Comput-
ers C-35, 8, 677–691.

Cassez, F., David, A., Fleury, E., Larsen, K. G., and Lime, D. 2005. Efficient on-the-fly algorithms
for the analysis of timed games. In CONCUR. LNCS 3653. 66–80.

Cerný, P., Chatterjee, K., Henzinger, T. A., Radhakrishna, A., and Singh, R. 2011. Quantitative
synthesis for concurrent programs. In Computer Aided Verification, G. Gopalakrishnan and S. Qadeer,
Eds. Springer, 243–259.

Cimatti, A., Roveri, M., and Traverso, P. 1998. Strong planning in non-deterministic domains via
model checking. In AIPS. 36–43.

Della Penna, G., Magazzeni, D., Mercorio, F., and Intrigila, B. 2009. UPMurphi: A tool for
universal planning on pddl+ problems. In ICAPS.

Della Penna, G., Magazzeni, D., Tofani, A., Intrigila, B., Melatti, I., and Tronci, E. 2008.
Automated Generation of Optimal Controllers through Model Checking Techniques. Lecture Notes in
Electrical Engineering Series, vol. 15. Springer.

Dominguez-Garcia, A. and Krein, P. 2008. Integrating reliability into the design of fault-tolerant power
electronics systems. In PESC. IEEE, 2665–2671.

Eker, J., Janneck, J., Lee, E. A., Liu, J., Liu, X., Ludvig, J., Sachs, S., and Xiong, Y. 2003.
Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE 91, 1, 127–144.

Frehse, G. 2008. Phaver: algorithmic verification of hybrid systems past hytech. Int. J. Softw. Tools
Technol. Transf. 10, 3, 263–279.

Fu, M. and Xie, L. 2005. The sector bound approach to quantized feedback control. IEEE Trans. on
Automatic Control 50, 11, 1698–1711.

Girard, A., Pola, G., and Tabuada, P. 2010. Approximately bisimilar symbolic models for incrementally
stable switched systems. IEEE Transactions on Automatic Control 55, 1, 116–126.

Girault, A. and Rutten, É. 2009. Automating the addition of fault tolerance with discrete controller
synthesis. Formal Methods in System Design 35, 2, 190–225.

Gulwani, S., Jha, S., Tiwari, A., and Venkatesan, R. 2011. Synthesis of loop-free programs. In 32nd
Conference on Programming Language Design and Implementation, PLDI, M. W. Hall and D. A.
Padua, Eds. ACM, 62–73.

Gvero, T., Kuncak, V., and Piskac, R. 2011. Interactive synthesis of code snippets. In Computer Aided
Verification - 23rd International Conference, CAV, G. Gopalakrishnan and S. Qadeer, Eds. Lecture
Notes in Computer Science Series, vol. 6806. Springer, 418–423.

Henzinger, T., Ho, P.-H., and Wong-Toi, H. 1997. Hytech: A model checker for hybrid systems.
STTT 1, 1, 110–122.

Henzinger, T. A. 2010. From boolean to quantitative notions of correctness. In POPL. ACM, 157–158.

Henzinger, T. A. and Kopke, P. W. 1997. Discrete-time control for rectangular hybrid automata. In
ICALP. 582–593.

Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P. 1998. What’s decidable about hybrid
automata? J. of Computer and System Sciences 57, 1, 94–124.

Henzinger, T. A. and Sifakis, J. 2006. The embedded systems design challenge. In FM. LNCS 4085.
1–15.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

6:40 Federico Mari et al.

Hermanns, H., Larsen, K. G., Raskin, J.-F., and Tretmans, J. 2010. Quantitative system validation
in model driven design. In EMSOFT. ACM, 301–302.

Jha, S., Seshia, S. A., and Tiwari, A. 2011. Synthesis of optimal switching logic for hybrid systems. In
EMSOFT. ACM, 107–116.

Jha, S. K., Gulwani, S., Seshia, S. A., and Tiwari, A. 2010. Synthesizing switching logic for safety and
dwell-time requirements. Tech. Rep. UCB/EECS-2010-28, EECS Department, University of California,
Berkeley. Mar.

Kim, W., Gupta, M. S., Wei, G.-Y., and Brooks, D. M. 2007. Enabling on-chip switching regulators
for multi-core processors using current staggering. In ASGI.

Kreisselmeier, G. and Birkhölzer, T. 1994. Numerical nonlinear regulator design. IEEE Trans. on on
Automatic Control 39, 1, 33–46.

Kuncak, V., Mayer, M., Piskac, R., and Suter, P. 2010. Comfusy: A tool for complete functional
synthesis. In Computer Aided Verification, 22nd International Conference, CAV, T. Touili, B. Cook,
and P. Jackson, Eds. Lecture Notes in Computer Science Series, vol. 6174. Springer, 430–433.

Kuncak, V., Mayer, M., Piskac, R., and Suter, P. 2012. Software synthesis procedures. Commun.
ACM 55, 2, 103–111.

Larsen, K. G., Pettersson, P., and Yi, W. 1997. Uppaal: Status & developments. In CAV. LNCS 1254.
456–459.

Maler, O., Manna, Z., and Pnueli, A. 1992. From timed to hybrid systems. In Proceedings of Real-Time:
Theory in Practice, REX Workshop, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,
Eds. Lecture Notes in Computer Science Series, vol. 600. Springer, 447–484.

Maler, O., Nickovic, D., and Pnueli, A. 2007. On synthesizing controllers from bounded-response
properties. In CAV. LNCS 4590. Springer, 95–107.

Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2010. Synthesis of quantized feedback control software
for discrete time linear hybrid systems. In CAV. LNCS 6174. 180–195.

Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2011a. From boolean relations to control software. In
ICSEA.

Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2011b. Quantized feedback control software synthesis
from system level formal specifications. CoRR abs/1107.5638v1.

Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2011c. Quantized feedback control software synthesis
from system level formal specifications for buck dc/dc converters. CoRR abs/1105.5640.

Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2012a. Control software visualization. In Proceed-
ings of INFOCOMP 2012, The Second International Conference on Advanced Communications and
Computation. ThinkMind, 15–20.

Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2012b. Linear constraints as a modeling language for
discrete time hybrid systems. In Proceedings of ICSEA 2012, The Seventh International Conference
on Software Engineering Advances. ThinkMind, 664–671.

Mari, F., Melatti, I., Salvo, I., and Tronci, E. 2012c. Undecidability of quantized state feedback
control for discrete time linear hybrid systems. In Proceedings of the International Colloquium on
Theoretical Aspects of Computing, ICTAC, A. Roychoudhury and M. D’Souza, Eds. LNCS Series, vol.
7521. Springer-Verlag Berlin Heidelberg, 243–258.

Mazo, M., Davitian, A., and Tabuada, P. 2010. Pessoa: A tool for embedded controller synthesis. In
CAV. LNCS 6174. 566–569.

Mazo, M. J. and Tabuada, P. 2011. Symbolic approximate time-optimal control. Systems & Control
Letters 60, 4, 256–263.

Monniaux, D. 2010. Quantifier elimination by lazy model enumeration. In CAV. LNCS 6174. 585–599.

Neumaier, A. and Shcherbina, O. 2004. Safe bounds in linear and mixed-integer programming. Mathe-
matical Programming, Ser. A 99, 283–296.

Peter, H.-J., Ehlers, R., and Mattmüller, R. 2011. Synthia: Verification and synthesis for timed
automata. In Computer Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds. Springer, 649–655.

Platzer, A. and Clarke, E. M. 2009. Formal verification of curved flight collision avoidance maneuvers:
A case study. In Proceedings of FM 2009: Formal Methods, Second World Congress, A. Cavalcanti and
D. Dams, Eds. Lecture Notes in Computer Science Series, vol. 5850. Springer, 547–562.

Pnueli, A. and Rosner, R. 1989a. On the synthesis of a reactive module. In Conference Record of the
Sixteenth Annual ACM Symposium on Principles of Programming Languages, POPL. ACM Press,
179–190.

Pnueli, A. and Rosner, R. 1989b. On the synthesis of an asynchronous reactive module. In Au-
tomata, Languages and Programming, 16th International Colloquium, ICALP, G. Ausiello, M. Dezani-

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

QFC Software Synthesis from Formal Specifications 6:41

Ciancaglini, and S. R. D. Rocca, Eds. Lecture Notes in Computer Science Series, vol. 372. Springer,
652–671.

Pola, G., Girard, A., and Tabuada, P. 2007. Symbolic models for nonlinear control systems using
approximate bisimulation. In Decision and Control, 2007 46th IEEE Conference on. 4656 –4661.

QKS Web Page 2011. http://mclab.di.uniroma1.it/ .

Ramadge, P. J. and Wonham, W. M. 1987. Supervisory control of a class of discrete event processes.
SIAM Journal Control Optimization 25, 1, 206–230.

Sankaranarayanan, S. and Tiwari, A. 2011. Relational abstractions for continuous and hybrid systems.
In Computer Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds. Springer, 686–702.

SCADE Web Page 2012. http://www.esterel-technologies.com/products/scade-system/.

Schewe, S. and Finkbeiner, B. 2006. Synthesis of asynchronous systems. In Logic-Based Program Syn-
thesis and Transformation, 16th International Symposium, LOPSTR, G. Puebla, Ed. Lecture Notes in
Computer Science Series, vol. 4407. Springer, 127–142.

Schrom, G., Hazucha, P., Hahn, J., Gardner, D., Bloechel, B., Dermer, G., Narendra, S.,
Karnik, T., and De, V. 2004. A 480-mhz, multi-phase interleaved buck dc-dc converter with hysteretic
control. In PESC. IEEE, 4702–4707 vol. 6.

Simulink Web Page 2012. http://www.mathworks.it/products/simulink/ .

So, W.-C., Tse, C., and Lee, Y.-S. 1996. Development of a fuzzy logic controller for dc/dc converters:
design, computer simulation, and experimental evaluation. IEEE Trans. on Power Electronics 11, 1,
24–32.

Srivastava, S., Gulwani, S., Chaudhuri, S., and Foster, J. S. 2011. Path-based inductive synthesis for
program inversion. In 32nd Conference on Programming Language Design and Implementation, PLDI,
M. W. Hall and D. A. Padua, Eds. ACM, 492–503.

Srivastava, S., Gulwani, S., and Foster, J. S. 2010. From program verification to program synthesis. In
37th Symposium on Principles of Programming Languages, POPL, M. V. Hermenegildo and J. Palsberg,
Eds. ACM, 313–326.

Taly, A., Gulwani, S., and Tiwari, A. 2009. Synthesizing switching logic using constraint solving. In
Proc. 10th Intl. Conf. on Verification, Model Checking and Abstract Interpretation, VMCAI. LNCS
Series, vol. 5403. Springer, 305–319.

Texas Instruments 2001. Slvp182: High accuracy synchronous buck dc-dc converter:
http://focus.ti.com.cn/cn/lit/ug/slvu046/slvu046.pdf .

Tiwari, A. 2008. Abstractions for hybrid systems. In Formal Methods in Systems Design.

Tronci, E. 1996. Optimal finite state supervisory control. In CDC. IEEE.

Tronci, E. 1997. On computing optimal controllers for finite state systems. In CDC. IEEE, 3592–3593 vol.
4.

Tronci, E. 1998. Automatic synthesis of controllers from formal specifications. In ICFEM. IEEE, 134–143.

Tronci, E. 1999a. Automatic synthesis of control software for an industrial automation control system. In
ASE. IEEE, 247–250.

Tronci, E. 1999b. Formally modeling a metal processing plant and its closed loop specifications. In HASE.
IEEE, 151.

Wong-Toi, H. 1997. The synthesis of controllers for linear hybrid automata. In CDC. IEEE, 4607–4612
vol. 5.

Yousefzadeh, V., Babazadeh, A., Ramachandran, B., Alarcon, E., Pao, L., and Maksimovic, D.
2008. Proximate time-optimal digital control for synchronous buck dc–dc converters. IEEE Trans. on
Power Electronics 23, 4, 2018–2026.

Authors’ version of ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 1, Article 6, Pub. date: February 2014.

http://mclab.di.uniroma1.it/
http://www.esterel-technologies.com/products/scade-system/
http://www.mathworks.it/products/simulink/
http://focus.ti.com.cn/cn/lit/ug/slvu046/slvu046.pdf

	Introduction
	The Separation-of-Concerns Approach
	Our Main Contributions

	Background
	Predicates
	Mixed Integer Linear Programming
	Labeled Transition Systems

	Discrete Time Linear Hybrid Systems
	Buck DC-DC Converter as a DTLHS

	Quantized Feedback Control
	Feedback Control Problem for LTS
	Feedback Control Problem for DTLHS
	Quantized Feedback Control Problem
	Proof of Uniqueness of the Most General Optimal Controller

	Control Abstraction
	Maximum and Minimum Control Abstractions
	Proof of Control Abstraction Properties

	Quantized Controller Synthesis
	QFC Synthesis Algorithm
	Synthesis Algorithm Correctness
	Quantization
	Computing Minimum Control Abstractions
	Computing Minimum Full Control Abstraction

	Self Loop Elimination
	Proof of Function selfLoop Correctness
	Proof of Functions minCtrAbs and minFullCtrAbs Correctness
	Proof of Synthesis Algorithm Correctness
	Details on Actions Admissibility Check

	Control Software Generation
	Control Software WCET

	Experimental Results
	Buck DC-DC Converter: Experimental Settings
	Buck DC-DC Converter: QKS Performance
	MILP problems Analysis

	Buck DC-DC Converter: Control Software Performance
	Controllable Region
	Setup Time and Ripple

	Inverted Pendulum: Experimental Settings
	Inverted Pendulum: QKS Performance
	Inverted Pendulum: Control Software Performance

	Related Work
	Control Software Synthesis from System Level Formal Specifications
	Control of Linear and Switched Hybrid Systems
	Control of Timed Automata and Linear Hybrid Automata
	Control of Piecewise Affine and Nonlinear Hybrid Systems
	Software Synthesis in a Finite Setting
	Switching Logic
	Abstraction

	Software Synthesis from Formal Specifications
	Summary

	Conclusions
	ACRONYMS

