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Abstract—This paper compares the performance of five 

different Distribution System State Estimation (DSSE) methods, 

using field data taken from a European MV distribution 

network. The performance of each method is assessed in terms 

of its solution accuracy, robustness to noise and input 

measurement uncertainty, and ability to identify bad data and 

network topology errors. The advantages and disadvantages of 

each approach are discussed with regard to their application to 

static state estimation in MV distribution systems, where the 

quantity and quality of available network measurements is 

typically low. The Weighted Least Squares (WLS) approach is 

by far the most widely-used method in this context. However, 

the results from this study demonstrate that Extended Kalman 

Filter (EKF) techniques have significant advantages, 

particularly in terms of their ability to handle various types of 

input data errors. The performance of robust solution methods 

for distribution system state estimation is also compared. 

Index Terms—State estimation, power distribution, smart grids, 

power system analysis computing, distributed energy 

management systems. 

I. INTRODUCTION 

Distribution systems were traditionally designed as 
unidirectional links between transmission network bulk supply 
points and end-users, and were operated passively, with 
limited monitoring and control capabilities. The recent drive 
towards actively-managed distribution systems creates a 
requirement for a much improved level of visibility 
throughout the distribution network [1], [2]. This has led to 
increased interest in the development of Distribution System 
State Estimation (DSSE) techniques [3]-[10].  

However, the main practical issue for implementing SE in 
distribution systems is the lack of available on-line network 
measurements. While monitoring and communications 
infrastructure in distribution networks is gradually improving 
as systems are modernised, the quantity and quality of 
available measurements is usually still very limited, especially 
when compared to transmission systems. The introduction of 
smart metering infrastructure provides detailed information on 
the energy consumption at each network node. However, 
using smart meter measurements as a direct input to DSSE is 
generally not possible due to low data rates, low data 

reliability, and a lack of time synchronisation. Despite these 
limitations, smart metering can benefit DSSE by providing 
much better load pseudo-measurements, and can also help to 
determine the network post-fault topology and state [5], [6]. 
Other advanced metering infrastructure, such as PMUs, can 
greatly improve observability, but these have not been 
installed in distribution systems in significant numbers to date. 
Hence, a number of authors have developed DSSEs which rely 
heavily on pseudo-measurements of power injections at each 
network node, along with a very limited number of real, on-
line measurements at certain network locations (e.g. from 
SCADA or PMU units installed at primary substations or main 
feeder heads) [8]-[10]. 

Given this context, the presented paper applies five 
different SE methods to a typical European MV distribution 
network, with the aim of simulating and assessing the SE 
performance in a distribution network scenario where the 
number of real measurements is low, and the DSSE inputs are 
comprised mainly of high-variance load pseudo-
measurements. The SEs are tested to compare their 
performance in terms of SE accuracy, noise performance, 
robustness, handling of bad input data and topological errors, 
and computation time. The paper is structured as follows: 
Section II briefly outlines the different SE solvers used; 
Section III describes the MV network case study and discusses 
the performance of each SE; and Section IV gives the 
discussion and conclusions. 

II. METHODOLOGY 

The most widely-used approach for DSSE in the literature 
is “static” SE, which applies a single scan of measurement 
input data to estimate the system state at the current point in 
time. These methods typically use Weighted Least Squares 
(WLS) or Weighted Least Average (WLAV) estimation, or a 
combination of these approaches [9], [11]. Several authors 
have applied “dynamic”, or tracking SEs, based on Kalman 
filtering approaches at the distribution level, e.g. [6]. In 
addition, DSSE solvers employing robust statics methods have 
been used in [3], [9]. In this paper, five different SE solvers 
are applied to the MV distribution network case study: 1) 
Weighted Least Average (WLAV); 2) Weighted Least 
Squares (WLS); 3) Weighted Least Squares-Robust (WLS-R); 
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(5) Extended Kalman Filter (EKF); 5) Extended Kalman 
Filter-Robust (EKF-R). The performance of each SE is 
assessed based on estimation accuracy, robustness to noise 
and gross input data errors, ability to detect network topology 
errors, and computation time. SEs 1-5 are outlined very briefly 
below. For a more detailed description of each technique, the 
reader is referred to [1], [3], [7]-[9]. 

1) Weighted Least Average (WLAV) Estimator: The 

distribution network state is expressed as the vector x 

containing the voltage magnitudes and voltage angles at each 

node in the system. The input measurement vector z comprises 

of measurements of power/current injections at system buses, 

measurements of active/reactive power flows in system 

branches, pseudo-measurements of network quantities, or any 

combination of the above. This forms a set of over-

determined, non-linear equations, where h(x) are the power 

flow functions corresponding to each measurement in z, and e 

is the vector of measurement errors. The Jacobian matrix 

( ) / H h x x  relates z to x and is composed of the partial 

derivatives of the measurements as a function of the system 

state. The SE objective function is given by:  

 ( ) ( [ ( )])
x

min abs 
WLAV

J x W z h x  

where W  is the input measurement weight matrix with each 

weight set according to the inverse of the variance of its 
corresponding measurement. The minimisation in (1) is solved 
using the Newton-Raphson method. The presence of bad data 
in the system measurement data set can be detected by 

applying statistical tests to the objective function ˆ( )J x , and to 

the normalised residual vector given by:  

 ˆ( ) r z h x  (2) 

The residual error vector is normalised by
1

jj
n

r r , where 

jj  is the diagonal of the covariance matrix: 

 ˆ ˆ( ) ( )  1 1 T

r
C W H x G H x  (3) 

2) Weighted Least Squares (WLS) Estimator: The WLS 

estimator is the most widely-approach for static SE. The 

method  is the same as the WLAV approach (1)-(3), but with 

the quadratic (least-squares) minimisation function: 

 

 2( ) [ ( )]xmin  
WLS

J x W z h x  (4) 

3) Weighted Least Squares-Robust (WLS-R) Estimator: In 

the presence of presence of gross input data errors (outlier 

values), conventional SE approaches can have computational 

issues resulting in the minimisation becoming insoluble. The 

WLS estimator is particularly sensitive to outlier points, since 

the larger the residual, the larger an influence it has on the 

quadratic objective function. In order to improve the 

robustness of the SE in the presence of bad data, “robust” 

estimators were proposed in [3], [8], [11], which work by re-

assign the weights of W as the SE minimisation is solved, so 

that the weights of suspected bad data (outlier) points are 

reduced in the calculation. In this paper, the equivalent weight 

function proposed in [8] is applied to create a “robust” WLS 

estimator. The equivalent weights are re-calculated at each SE 

iteration as follows: 
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where i , 1,2,...,j N , 1.438  , and med is the median, and 

the variables 
0k  and 

1k  are calculated based on the influence 

function from robust statistics theory as described in [8]. The 

objective is to reduce the influence of input data points with 

extreme values which can cause the estimator to break down. 

4) Extended Kalman Filter (EKF): The EKF approach is 

formulated by the dynamic model [12]:  

 
1k k k k k   x F x g w  (7) 

where 
kF  is the state transition matrix, 

kg  is a vector 

representing the trend behaviour of the state trajectory, and 

kw  represents the process noise, modelled as Gaussian white 

noise with zero mean and covariance matrix C. At each time 

step k, the Jacobian matrix 
kH  is evaluated with the current 

predicted states, and the EKF equations, where the recursions 
are given by:  

 1 1 11 1[ ( )]k k kk k     x x K z h x   (8) 

where x  is the estimated state vector, x  is the predicted state 

vector, and 1 1 1k k k



   T 1
K W H C . The state transition 

matrix F  and vector g  are updated at each iteration using the 

Holt-Winters method outlined in [13]. The “innovations” at 
each time step are defined as:  

 
1 1 1

ˆ
k k k   v z z   (9) 

where 
1 1

ˆ ˆ( )k k z h x , v is approximately a white Gaussian 

process with zero mean and covariance 
vC  is given by:  

 1 1 1 1

T

v k k k k    C W H M H   (10) 

where 
1kM  is the covariance, and innovations are normalised 

according to ( ) / ( )i i
n n n

v v σ , where ( )i
n
σ  is the standard 

deviation of the i-th iteration [14]. 

5) Extended Kalman Filter-Robust Estimator (EKF-R): 

This SE uses the EKF equations described in (7)-(10), but in 

this case the input measurement weight matrix 
1kW   is 

adjusted according to (5)-(6), in order to reduce the influence 

of outlier values in the measurement inputs. 



III. SE PERFORMANCE TESTS USING FIELD DATA 

The MV distribution network used in this paper is taken 
from the European Commission project “SmartHG” [15]. This 
network is a suburban/rural 10kV system with a weakly-
meshed structure. A reduced version of the network schematic 
is shown in Fig. 1. The network has a peak demand of 3.2 
MW, which is made up primarily of suburban/rural residential 
customers (77% of the total annual demand), with the 
remaining demand comprising factory, district heating and 
street lighting loads. There are around 1,600 customers located 
at 46 MV nodes, where each MV node corresponds to a 
secondary transformer substation (10:0.4 kV). 

On-line measurements of active and reactive power 
consumption were available at the primary (50:10 kV) 
transformer. At the MV demand nodes, there are no direct, on-
line measurements of voltage or active/reactive power 
measurements available (this is typical of MV distribution 
networks, where measurement redundancies are very low due 
to economic and technical reasons). However, smart meters 
are installed at all end-users in the LV network, and the hourly 
consumption/production data for each MV node were 
available in the form of aggregated smart meter 
measurements. The case study network has a European 
configuration where the entire MV system is in three phases, 
and the connected LV networks are well-balanced across the 
three phases. Therefore it is assumed in this paper that the MV 
distribution system is balanced, or at least that the phase 
imbalance is not critical. In order to apply SEs 1-5 to LV 
networks, or MV networks with single and two-phase laterals, 
the methodology described in Section II should be modified to 
include the 3-phase power flow equations. 

 

Figure 1. Schematic diagram of MV distribution network. 

A. SE Solution Accuracy 

The SE methods 1-5 outlined in Section II were applied to 
recorded data from the MV network. In order to create a set of 
reference values for the network state, i.e. the “true” values of 
voltage magnitude and angle throughout the network at each 
time step, the load flow was solved using a full set of 
aggregated smart meter measurements at each MV node as the 
network power injections.  This data was pre-processed, 

removing any bad data and filling in any missing data points 
with load estimates, as outlined in [3], [4]. Bus 1 was used as 
the reference with 1.0V   and 0  . The “true” network 

state vector at each time step was compared with the values 
obtained from SEs 1-5. Real measurements were assumed to 
have measurement uncertainty of 1%, and pseudo-
measurements of the real/reactive power injections at each 
MV node were applied with an uncertainty of 10% around the 
mean. Fig. 2 shows a sample of the calculated V  and   

values at Bus 48 (the MV node with the greatest electrical 
distance from the primary substation, and the largest 
estimation error). The mean and maximum voltage magnitude 
and angle errors, are given in Table I, where all errors are 
calculated as Mean Absolute Percentage Errors (MAPEs). The 
results demonstrate that all SEs 1-5 reach a similar solution, 
which is expected since the level of uncertainty in the pseudo-
measurements is low (10% in this case). 

 

Figure 2. Sample of SE solutions for Bus 48 voltage magnitude and angle. 

TABLE I.  MEAN AND MAXIMUM ERRORS FOR BUS 48 VOLTAGE 

MAGNTITUDE AND ANGLE CALCULATED USING SES 1-5 

MAPE WLAV WLS WLS-R EKF EKF-R 

|V| mean (%) 0.153 0.157 0.166 0.156 0.141 

|V| max  (%) 0.729 0.805 1.186 0.950 0.954 

δ max  (%) 0.979 0.963 0.905 0.980 0.915 

δ mean  (%) 9.998 8.958 8.026 9.808 8.183 

 

B. Noise Performance Tests 

In order to demonstrate the performance of SEs 1-5 in 

situations where there is a high level of uncertainty in the 

pseudo-measurements at each MV node
1
, measurement 

uncertainty is modelled by adding Gaussian white noise to 

each MV node active/reactive power injection. The noise is 

increased incrementally at each MV node from 0% to 50%, 

and the MAPE of V  and   across the entire network is 

calculated for each case. The results are summarised in Fig. 3, 

where it is shown that all SEs 1-5 demonstrate similar 

performance while the level of uncertainty in the input real 

and reactive power injections remains below 25%. In the case 

of the voltage angle, , WLS-R and EKF-R demonstrate a 

slightly better performance while uncertainty is in the 0%-

                                                           
1 This may be the case, for instance, if on-line measurements of the power 

injections are not available, and estimated load profiles based on historical 

smart meter data are used instead. 



30% range. However, above 25% uncertainty, the 

performance of the robust solution methods deteriorates. The 

iterative re-calculation of the measurement weight matrix W  

described by (5)-(6) fails when power injection uncertainty is 

above 30%, since the algorithm begins to consider noisy 

values in the input data set as “outliers”, and attempts to 

reduce the influence of these variables in W , leading to a 

loss of valuable information from the input data set. 

 

Figure 3. Voltage magnitude and voltage angle estimation error results 
with various levels of noise applied to all input measurements. 

C. Robustness Test 

In order to test SE “robustness”, i.e. the ability to reach a 
solution when multiple errors and/or outliers are present in the 
input measurement data set, gross input data errors ( 5 ) 

were applied at multiple MV nodes until the breakdown point 
of each SE solver was reached. The conventional SE solvers 
(WLAV, WLS and EKF) reach a breakdown point at 9-10 
gross input data errors. At this point it was not possible for the 
SE algorithm to reach a correct solution due to poor 
conditioning of the Jacobian matrix H. The “robust” SEs 
(WLS-R and EKF-R) are able to reduce the influence of 
outlier values and reach a correct SE solution with voltage 
magnitude and angle errors of less than 10%. The breakdown 
point of the robust methods only occurs at > 40 input errors, at 
which point measurement data redundancy becomes 
insufficient to detect errors, Table II. 

TABLE II.  BREAKDOWN POINT OF EACH SE 1-5 

Breakdown 

Point WLAV WLS WLS-R EKF EKF-R 

No. errors 9 9 >40  10 >40 

 

D. Bad Data Identification 

For identification of bad data in the MV network 
measurements, the “tracking” or dynamic SE methods tested 
(EKF and EKF-R) have advantages over the “static” SE 
approaches (WLAV, WLS and WLS-R) in their ability to 
clearly discriminate bad input measurements. Similar 
observations have been made for transmission-level SE [14]. 
In WLS-based SE methods

2
, bad input data in one network 

                                                           
2
 The term “WLS-based SE” is used below to refer to SEs 1-3, and “EKF-

based SE” is used to refer to SEs 4-5. 

measurement typically results in high residual errors not only 
in the corresponding node, but also at multiple nearby nodes, 
causing a “smearing effect" in the residual error vector. In 
EKF-based SEs, bad input data are detected as unexpected 
values in the innovation vector (9)-(10), which can provide 
more accurate error identification. In order to demonstrate bad 
data detection, gross input data errors ( 5 ) are added at two 

random MV nodes in the test case MV network, Fig. 4.  

For the WLS-based SE, there is an obvious smearing 
effect, where the bad input data result in multiple high 
residuals. This makes the input data errors difficult to 
distinguish clearly from measurement noise, and can cause 
problems for bad data identification, particularly if there are 
multiple simultaneous errors. The bad measurements are much 
more easily identifiable in the innovation vector (EKF-based 
SE), Fig. 4. 

 

Figure 4. Sample of outputs where the same input data error is tested 
using “static” (WLS-based) and “tracking” (EKF-based) SE approaches (only 

the power injection error vectors are shown). 

E. Handling of Network Topology Errors 

It is assumed in the above analysis that the topology of the 
network is known a priori, before carrying out the SE. 
However, topological errors can cause problems for DSSE, 
e.g. if switch statuses in the network are not accessible to the 
operator due to a fault, or if they are incorrect (i.e. a switch 
status is showing closed when it is actually open, or vice 
versa). In such scenarios, the network model used for the SE 
will be incorrect. Accordingly, several authors have applied an 
event-triggered approach to network model identification in 
distribution systems [5], [6]. If a topology error is suspected, 
e.g. due to a switching operation or a network fault, a network 
topology identification algorithm is run in order to identify the 
true network model from several possible network 
configurations. 

In this paper, the Recursive Bayesian Algorithm (RBA) for 
network model identification proposed in [5] was applied to 
the MV test case network in Fig. 1. It was found that the 
choice of estimator has an influence on the network model 
identification, and that the EKF-based methods showed a 
slightly faster convergence on the correct network topology. A 
sample of the results of the event-triggered RBA analysis is 
shown in Fig. 5, where the objective was to identify the true 
network model from four possibilities: 



 M1: all switches S1-S3 closed. 

 M2: S1 open, S2 and S3 closed. 

 M3: S2 open, S1 and S3 closed. 

 M4: S3 open, S1 and S2 closed. 

Each model M1-M4 was assigned the same initial 
probability (0.25), and the correct network topology model 
(M1) is identified, since its probability trends to unity 
following each RBA iteration, while the probabilities of 
models M2-M4 trend to zero. 

 

Figure 5. Network model identification using event-triggered RBA 
method. 

F. Computation Times 

The computation times for each of the 5 SE solvers are 
given in Table III, where the code was implemented in 
MatLab. The computational effort required for the EKF-based 
SEs are larger due to the added SE prediction step, and the 
“robust” methods required slightly longer solution times, due 
to the iterative re-calculation of measurement weights. 

TABLE III.  AVERAGE COMPUTATION TIME FOR ONE FULL MV 

NETWORK SOLUTION 

WLAV WLS WLS-R EKF EKF-R 

57.5 ms 59.0 ms 62.4 ms 68.2 ms 71.2 ms 

 

IV. DISCUSSION AND CONCLUSIONS 

This paper compared five different SE solution methods, 
through simulation using field data recorded from an MV 
distribution network. The performance of each SE 1-5 was 
compared considering various aspects: SE accuracy, 
noise/uncertainty, robustness, computation times, and 
handling of bad data. All SEs 1-5 reached similar solutions 
while the uncertainty in the input measurements was low (less 
than 25%). The “robust” SEs, WLS-R and EKF-R, had higher 
breakdown points, and were able to reach a correct solution 
even in the presence of outlier values which caused the 
conventional SEs to fail. However, there was trade-off 
between robustness and noise performance; with the “robust” 
methods showing larger errors when input measurement 
uncertainties are greater than 25%, Section III-B. The analysis 
found significant differences between the EKF-based and 
WLS-based solvers in detection and processing of bad input 
data. It was demonstrated that the EKF-based approaches 
allowed better discrimination of bad data, since the innovation 
vector does not produce the “smearing effect” that occurs in 

the WLS-based SE error residuals. EKF-based approaches 
also showed better performance in the network topology 
identification problem, with slightly faster convergence on the 
correct model. 

In this paper, a detailed comparison of the performance of 
WLS and EKF-based approaches to the static DSSE problem 
was carried out using field data from an existing MV 
distribution system. In general, EKF-based solvers have only 
been applied in distribution networks where high-resolution 
measurements are available, e.g. from PMUs. In distribution 
system applications where measurement data is very limited, 
WLS-based approaches have been used, e.g. [3]-[5], [7]-[9], 
[11]. However, the results in this paper suggest that EKF-
based approaches have significant advantages over WLS-
based methods, even in networks where the overall quantity 
and quality of measurements is poor. These points have been 
demonstrated using field data from an existing MV 
distribution network with a European configuration. In 
addition, this paper provided a comparison of the performance 
of “robust” DSSE solvers to conventional approaches, which 
has not been published before. Future work will carry out this 
analysis on other distribution system case studies, including 
MV/LV networks with significant phase imbalances. 
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