
Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci
Department of Computer Science – Sapienza University of Rome

Via Salaria 113, 00198 Rome, Italy
Email: {mari,melatti,salvo,tronci}@di.uniroma1.it

Abstract—Model Based Design is particularly appealing in
embedded software design where system level specifications are
much easier to define than the control software behavior itself.
Formal analysis of Embedded Systems requires modelling both
continuous systems (typically, the plant) as well as discrete
systems (the controller). This is typically done usingHybrid
Systems. Mixed Integer Linear Programming (MILP) based
abstraction techniques have been successfully applied to au-
tomatically synthesize correct-by-construction control software
for Discrete Time Linear Hybrid System, where plant dynamics
is modeled as a linear predicate over state, input, and next
state variables. MILP solvers requires constraints represented
as conjunctive predicates. In this paper we show that, under the
hypothesis that each variable ranges over a bounded interval,
any linear predicate built upon conjunction and disjunction
of linear constraints can be automatically transformed into an
equisatisfiable conjunctive predicate. Moreover, since variable
bounds play a key role in this transformation, we present an
algorithm that taking as input a linear predicate, computes
implicit variable bounds.

Keywords-Model-based software design; Linear predicates;
Hybrid systems

I. I NTRODUCTION

Many Embedded Systems areSoftware Based Control
Systems(SBCSs). An SBCS consists of two main subsys-
tems: thecontroller and theplant. Typically, the plant is
a physical system consisting, for example, of mechanical
or electrical devices, while the controller consists of con-
trol software running on a microcontroller. In an endless
loop, eachT seconds (sampling time), the controller, after
an Analog-to-Digital (AD) conversion (quantization), reads
sensor outputs from the plant and, possibly after aDigital-to-
Analog(DA) conversion, sends commands to plant actuators.
The controller selects commands in order to guarantee that
the closed loop system(that is, the system consisting of
both plant and controller) meets given safety and liveness
specifications (System Level Specifications).

Software generation from models and formal specifica-
tions forms the core ofModel Based Designof embedded
software [1]. This approach is particularly interesting for
SBCSs since in such a case system level specifications are
much easier to define than the control software behavior
itself. Correct-by-construction software generation as well as
formal verification of system level specifications for SBCSs
requires modelling both the continuous subsystem (the plant)
and discrete systems (the controller). This is typically done
usingHybrid Systems(e.g., see [2][3]).

Discrete Time Linear Hybrid Systems(DTLHSs) [4][5]
provide an expressive model for closed loop systems: a
DTLHS is a discrete time hybrid system whose dynamics

is defined as a linear predicate (i.e., a boolean combination
of linear constraints) on its continuous as well as discrete
(modes) variables. A large class of hybrid systems, including
mixed-mode analog circuits, can be modeled using DTLHSs.
System level safety as well as liveness specifications are
modeled as set of states defined, in turn, as linear predicates.

In [6], stemming from a constructive sufficient condition
for the existence of a quantized sampling controller for an
SBCS modelled as a DTLHS, we presented an algorithm
that, given a DTLHS modelH for the plant, a quantization
schema (i.e., how many bits we use for AD conversion) and
system level specifications, returns correct-by-construction
quantized feedbackcontrol software(if any) meeting the
given system level specifications. The synthesis algorithm
rests on the fact that, because of the quantization process,
the plantP is seen by the controller as aNondeterministic
Finite State Automaton(NFSA) P̂ , that is an abstraction
of P . The NFSAP̂ is computed by solvingMixed Integer
Linear Programming(MILP) problems, and thus it requires
the DTLHS dynamics given as a conjunctive predicate, i.e.,
a conjunction of linear constraints.

This paper is motivated by circumventing such a limita-
tion, by showing that, under the hypothesis that each variable
ranges over a bounded interval, any linear predicate can be
represented by an equivalent conjunctive predicate.

Bounds on variables that describe DTLHS behaviour is
a reasonable hypothesis. Usually, control software drives
the plant towards a goal, while keeping it inside a given
bounded admissible region. Bounds on present state vari-
ables essentially model thesensing region, that is the range
of values observable by the sensors, that usually is a bounded
rectangular region (i.e., the Cartesian product of bounded
intervals). Bounds on controllable input variables model the
actuation region, that is the range of values of commands
that the actuators may send to the plant and it is also
typically a bounded rectangular region. Non-state variables
may model both non-observable plant state variables and
uncontrollable inputs (i.e., disturbances). Therefore, bounds
on such variables are usually implied by bounds on state
variables or by reasonable assumptions about disturbances.

1) Our Main Contributions: In this paper we give an
algorithm to transform any linear predicate into an equi-
satisfiable conjunctive predicate, under the hypothesis that
each variable ranges over a bounded interval. This allows a
MILP based abstraction technique to be applied on a wider
class of DTLHSs (Section III) with respect to [6].

We consider predicates built upon linear constraints (i.e.,
inequalities of the shape

∑n

i=1 aixi ≤ b, Section II),

conjunctions and disjunctions. First, we show that, at the
price of introducing fresh boolean variables, a predicate
can be transformed into an equisatisfiableguarded predicate
(Section IV), that is a conjunction of guarded constraints,
i.e., constraints of the shapey → (

∑n

i=1 aixi ≤ b). Then,
assuming that each variable ranges over a bounded interval,
we show that any guarded constraint can be in turn trans-
formed into aconjunctive predicate, i.e., a conjunction of
linear constraints (Section IV-A). Conjunctive predicates are
the input language of MILP solvers. Finally, in Section V,
we give an algorithm that computes bounds for a variablex
in a given guarded predicateG(X), i.e., either it returns
two valuesmx,Mx ∈ R such that ifG(X) holds, then
mx≤x≤Mx, or it concludes that such values do not exist.
An evaluation of such algorithm is in Sections VI and VII.

A. Related Work

Mixed Integer Linear Programming (MILP) solving based
abstraction techniques have been designed for the verifi-
cation of Discrete Time Hybrid Automata (DHA) [4] and
implemented within the symbolic model checker HYSDEL
[7]. A MILP based DTLHS abstraction algorithm is the
core of automatic control software synthesis from system
level specifications in [6], and it requires DTLHS dynamics
modeled as a conjunctive predicate. The same limitation oc-
curs in abstraction techniques based on the Fourier-Motzkin
procedure for existential quantifier elimination [8].

The automatic procedure that we present here to transform
any linear predicate into an equisatisfiable conjunctive predi-
cate is reminiscent of Mixed Integer Programming modeling
techniques [9] in Operations Research and boolean formula
transformations involved in the conversion of a formula into
a conjunctive or disjunctive normal form [5][10].

Finally, an automatic convertion procedure targeting a
MILP formulation for automatic synthesis of schedules is
presented in [11], where the starting point is a deterministic
finite automaton rather than a linear predicate.

II. BASIC DEFINITIONS

An initial segment{1, . . . , n} of N is denoted by[n]. We
denote withX = x1, . . . , xn a finite sequence of distinct
variables, that we may regard, when convenient, as a set.
Each variablex ranges on a known (bounded or unbounded)
intervalDx either of the reals (continuous variables) or of
the integers (discrete variables). The set

∏
x∈XDx is denoted

by DX . Boolean variables are discrete variables ranging on
the setB = {0, 1}. If x is a boolean variable we writēx
for (1−x). The sequence of continuous (discrete, boolean)
variables inX is denoted byXr (Xd, Xb).

The set of sequences ofn boolean values is denoted by
B
n. The setBn

k⊆B
n denotes sequences that contains exactly

k elements equal to1. Given a, b∈Bn we say thata≤ b if
a is point-wise less or equal tob, i.e., if for all i∈ [n] we
have thatai≤ bi. Given a setB⊆B

n anda∈Bn we write
a≤B if there existsb∈B such thata≤b anda≥B if there
existsb∈B such thata≥b. We denote withJ(b) be the set
of indexes such thatbj=1, i.e., J(b)={j∈ [n] | bj=1}.

A. Predicates

A linear expressionL(X) =
∑n

i=1aixi is a linear
combination of variables inX with rational coefficients.
A constraint is an expression of the formL(X) ≤ b,
where b is a rational constant. We writeL(X) ≥ b for
−L(X)≤−b, L(X)= b for (L(X)≤ b) ∧ (−L(X)≤−b),
anda≤L(X)≤b for (L(X)≤b) ∧ (L(X)≥a).

Predicatesare inductively defined as follows. A constraint
C(X) is a predicate overX. If A(X) and B(X) are
predicates, then(A(X) ∧ B(X)) and (A(X) ∨ B(X)) are
predicates overX. Parentheses may be omitted, assuming
usual associativity and precedence rules of logical operators.
A conjunctive predicateis a conjunction of constraints.

A valuationoverX is a functionv that maps each variable
x ∈ X to a valuev(x) in Dx. We denote withX∗ ∈ DX

the sequence of valuesv(x1), . . . , v(xn). Given a predicate
P (Y,X), P (Y,X∗) denotes the predicate obtained by sub-
stituting each occurrence ofx with v(x). We call valuation
also the sequence of valuesX∗. A satisfying assignmentto
a predicateP (X) is a valuationX∗ such thatP (X∗) holds.
We denote withP also the set of satisfying assignments to
the predicateP . P (X) andQ(X) are equivalent, notation
P ≡Q, if they have the same set of satisfying assignments.
P (X) andQ(Z) are equisatisfiable, notationP ≃Q, if P
is satisfiable if and only ifQ is satisfiable.
B. Mixed Integer Linear Programming

A Mixed Integer Linear Programming(MILP) prob-
lem with decision variablesX is a tuple (max, J(X),
A(X)) where X is a list of variables,J(X) (objective
function) is a linear expression overX, and A(X) (con-
straints) is a conjunctive predicate overX. A solution to
(max, J(X), A(X)) is a valuationX∗ such thatA(X∗)
and ∀Z (A(Z)→ (J(Z)≤ J(X∗))). J(X∗) is the optimal
valueof the MILP problem. Afeasibilityproblem is a MILP
problem of the form(max, 0, A(X)). We write alsoA(X)
for (max, 0, A(X)). In algorithm outlines, MILP solver
invocations are denoted by functionfeasible(A(X)) that re-
turns TRUE if A(X) is satisfiable and FALSE otherwise, and
by function optimalValue(max, J(X), A(X)) that returns
either the optimal value of the MILP problem (max, J(X),
A(X)) or∞ if such MILP problem is unbounded. We write
(min, J(X), A(X)) for (max,−J(X), A(X)).

III. D ISCRETETIME L INEAR HYBRID SYSTEMS

Discrete Time Linear Hybrid Systems(DTLHSs) provide
a suitable model for many embedded control systems since
they can effectively model linear algebraic constraints in-
volving both continuous as well as discrete variables. In
Ex. 1, we present a DTLHS model of a buck DC-DC con-
verter, i.e., a mixed-mode analog circuit that converts the
DC input voltage to a desired DC output voltage.

Definition 1: A Discrete Time Linear Hybrid Systemis a
tupleH = (X, U, Y, N) where:
X = Xr ∪ Xd is a finite sequence of real and discrete

present statevariables.X ′ denotes the sequence ofnext state
variables obtained by decorating with′ variables inX.

R
C

rC

D

iD

L

u

+vu

+vD iC

+vO

Vi

iL
rL

iu +vC

Figure 1. Buck DC-DC converter

U = Ur ∪ Ud is a finite sequence ofinput variables.
Y = Y r ∪ Y d is a finite sequence ofauxiliary variables.

Auxiliary variables typically modelsmodes(switching ele-
ments) oruncontrollable inputs(e.g., disturbances).

N(X,U, Y,X ′) is a predicate overX∪U∪Y ∪X ′ defining
the transition relation(next state) of the system.

Example 1:The buck DC-DC converter is a mixed-mode
analog circuit (Figure 1) converting the DC input voltage (Vi

in Figure 1) to a desired DC output voltage (vO in Figure
1). Buck DC-DC converters are used off-chip to scale down
the typical laptop battery voltage (12-24) to the just few
volts needed by the laptop processor as well as on-chip to
supportDynamic Voltage and Frequency Scaling(DVFS) in
multicore processors. Because of its widespread use, control
schemes for buck DC-DC converters have been widely stud-
ied (e.g., see [12][13][14]). The typical software based ap-
proach is to control the switchu in Figure 1 (typically imple-
mented with a MOSFET) with a microcontroller. The circuit
in Figure 1 can be modeled as a DTLHSH=(X,U, Y,N).
The circuit state variables areiL and vC . However we can
also use the pairiL, vO as state variables inH model since
there is a linear relationship betweeniL, vC andvO, namely:
vO= rCR

rC+R
iL+

R
rC+R

vC . Such considerations lead us to the
following DTLHS modelH: X=Xr= iL, vO, U=Ud=u,
Y =Y r∪Y d whereY r= iu, vu, iD, vD andY d=q. Note how
H auxiliary variablesY stem from the constitutive equations
of the switching elements (i.e., the switchu and the diode D
in Figure 1). From a simple circuit analysis (e.g., see [15])
we have the following equations:

˙iL = a1,1iL + a1,2vO + a1,3vD (1)

˙vO = a2,1iL + a2,2vO + a2,3vD (2)

where the coefficientsai,j depend on the circuit parameters
R, rL, rC , L and C as follows:a1,1 = −

rL
L

, a1,2 = − 1
L

,
a1,3=−

1
L

, a2,1= R
rc+R

[− rcrL
L

+ 1
C
], a2,2= −1

rc+R
[rcR

L
+ 1

C
],

a2,3=−
1
L

rcR
rc+R

. Using a discrete time model with sampling
time T and writingx′ for x(t+ 1), we have:

i′L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD (3)

v′O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD. (4)

The algebraic constraints stemming from the constitutive
equations of the switching elements are the following:

vD = vu − Vi (5)

iD = iL − iu (6)

(u = 1) ∨ (vu = Roff iu) (7)

(u = 0) ∨ (vu = 0) (8)
((iD ≥ 0) ∧ (vD = 0)) ∨ ((iD ≤ 0) ∧ (vD = Roff iD)) (9)

The transition relationN of H is given by the conjunction
of the constraints in Eqs. 3–9.

IV. FROM L INEAR TO CONJUNCTIVE PREDICATES

As shown in [6], MILP solvers can be used to build a
suitable discrete abstraction of a DTLHS. As mentioned in
Section II-B, MILP solvers require constraints represented
as conjunctive predicates. In this section, we show how this
limitation can be circumvented. We proceed in two steps.
First, in Section IV, we introduceguarded predicatesand
we show that each predicate can be transformed into an
equivalent guarded predicate at the price of introducing new
auxiliary boolean variables. Then, in Section IV-A, we show
that, under the hypothesis that each variable ranges over
a bounded interval, each guarded predicate can be in turn
transformed into an equivalent conjunctive predicate.

1) Guarded Predicates:
Definition 2: Given a predicateP (X) and a fresh boolean

variablez 6∈X, the predicatez→P (X) (resp. z̄→P (X))
denotes the predicate(z=0)∨P (X) (resp.(z=1)∨P (X)).
We callz theguard variableand bothz andz̄ guard literals.
If P (X) is a constraintC(X), a predicate of the form
z → C(X) or z̄ → C(X) is called guarded constraint.
A generalized guarded constrainta predicate of the form
z1 → (z2 → . . .→ (zn → C(X)). . .) A guarded predicate
(resp. generalizedguarded predicate) is a conjunction of
either constraints or guarded constraints (resp. generalized
guarded constraints).

To simplify proofs and notations, without loss of general-
ity, we always assume guard literals distinct: a conjunction
z→C1(X) ∧ z→C2(X) is equisatisfiable to the guarded
predicatez1→C1(X)∧z2→C2(X)∧z1=z∧z2=z (z1, z2
fresh boolean variables). Moreover, in algorithm outlines,
conjunctive predicates will be regarded as sets of constraints.

By applying standard propositional equivalences, we have
the following facts.

Fact 1: A predicate of the formz →
∧

i∈[n] Pi(X) is
equivalent to the guarded predicate

∧
i∈[n](z→Pi(X)).

Fact 2: A generalized guarded constraintz1 → (z2 →
. . . → (zn → C(X)). . .) is equisatisfiable to the guarded
predicate(z−

∑
i∈[n] zi≥1− n) ∧ (z→C(X)), wherez is

a fresh boolean variable.
Proof: Let z be a fresh boolean variable. We have:

z1→(z2→ . . .→(zn→C(X)). . .)
≡ z1 ∧ z2 ∧ . . . ∧ zn→C(X)
≃ (z1 ∧ z2 ∧ . . . ∧ zn→z) ∧ (z→C(X))
≡ (z̄1 ∨ z̄2 ∨ . . . ∨ z̄n ∨ z) ∧ (z→C(X))
≡ (1−z1)+(1−z2)+. . .+(1−zn)+z≥1 ∧ (z→C(X))
≡ (z−

∑
i∈[n] zi≥1−n) ∧ (z→C(X))

Lemma 3:Any predicateP (X) is equisatisfiable to a pred-
icate Q(X,Z) = G(X,Z) ∧ D(Z), whereG and D are
generalized guarded predicates andZ is the set of boolean
variables that occur positively as guards inG.

Proof: By induction on the structure of the predicate
P (X). If P (X) is a constraint or a conjunction, the state-
ment easily follows from inductive hypothesis.

Let P (X) be the disjunctionP1(X) ∨ P2(X). By induc-
tive hypothesis, there exist two generalized guarded predi-
catesQ1(X,Z1) =G1(X,Z1) ∧ D1(Z1) andQ2(X,Z2) =

G2(X,Z2) ∧ D2(Z2) such thatP1(X) ≃ Q1(X,Z1) and
P2(X)≃Q2(X,Z2). We can always choose auxiliary boolean
variables in such a way thatZ1 ∩ Z2=∅.

Taken two fresh boolean variablesy1 andy2, the predicate
y1→ Q1(X,Z1) ∧ y2→ Q2(X,Z2) ∧ y1+y2 ≥ 1 is equi-
satisfiable toP (X). The predicatey1→Q1(X,Z1) has the
form y1→(

∧
i∈[n]G

i
1(X,Z1)∧

∧
j∈[p]D

j
1(Z1)) and therefore

it is not a generalized guarded constraint. By Fact 1, it
is equivalent to the predicate

∧
i∈[n](y1 → Gi

1(X,Z1)) ∧
∧

j∈[p](y1 → D
j
1(Z2)). By applying Fact 1 also toy2 →

Q2(X,Z2), the statement follows by takingZ=Z1 ∪ Z2 ∪
{y1, y2}, G(X,Z) =

∧
i∈[n]y1→ Gi

1(X,Z1) ∧
∧

i∈[m]y2→

Gi
2(X,Z2), andD(Z) =

∧
j∈[p]y1 → D

j
1(Z2) ∧

∧
j∈[q]y2 →

D
j
2(Z2) ∧ (y1+y2≥1)

Proposition 4: Any predicateP (X) is equisatisfiable to
a predicateQ(X,Z) =G(X,Z ′) ∧ D(Z), whereG andD
are guarded predicates andZ ′ ⊆ Z is the set of boolean
variables that occur positively as guards inG.

Proof: By Lemma 3, any predicateP (X) is equisatisfi-
able to a generalized guarded predicateG1(X,Z1)∧D1(Z1).
By Fact 2,D1(Z1) is equisatisfiable to a guarded predicate
D2(Z1, Z2). Let G1(X,Z1) =

∧
i∈[n]z

i
1 → (zi2 → . . . →

(zini
→ Ci(X)) . . .) ∧ G′

1(X,Z3), where G′
1(X,Z3) is a

guarded predicate (Z3 ⊆ Z1). By Fact 2G1(X,Z1) is eq-
uisatisfiable to the guarded predicate

∧
i∈[n]wi→Ci(X) ∧

∧
i∈[n](wi −

∑
j∈[ni]

zij ≥ 1 − ni) ∧ G′(X,Z3). The state-
ment follows by takingZ ′=Z3 ∪ {w1, . . . , wn}, Z=Z ′ ∪
Z1 ∪ Z2, G(X,Z)=

∧
i∈[n](z

i→Ci(X)) ∧G′′(X,Z ′), and
D(X,Z)=

∧
i∈[n](z

i−
∑

j∈[ni]
zij≥1−n) ∧D′′(Z ′, Z ′′)

The functionPtoG (Alg. 2) summarizes the predicate trans-
formations given in the proof of Prop. 4. It calls function
PtoGG(Alg. 1) that performs predicate transformations given
in the proof of Lemma 3. The functionfresh() returns at
each invocation a (globally) fresh variable.

Algorithm 1 From predicates to generalized guarded pred.
Input: P predicate overX
Output: 〈G,D,Z〉 whereG is a general. guarded predicate,

Z is the set of its (fresh) guard variables,
D(Z) is a generalized guarded predicate over Z

function PtoGG(P,X)
1. if P is a constraintC(X) then return 〈C(X),∅,∅〉
2. let P = P1 ⋄ P2 (⋄ ∈ {∧,∨})
3. 〈G1, D1, Z1〉 ←PtoGG(P1)
4. 〈G2, D2, Z2〉 ←PtoGG(P2)
5. if P = P1∧P2 then return 〈G1∪G2, D1∪D2, Z1∪Z2〉
6. if P = P1 ∨ P2 then
7. y1← fresh(), y2← fresh(), Z ′←Z1 ∪ Z2 ∪ {y1, y2}
8. D′={y1→γ|γ∈D1}∪{y2→γ|γ∈D2}∪{y1+y2≥1}
9. G′ = {y1 → γ | γ ∈ G1} ∪ {y2 → γ | γ ∈ G2}

10. return 〈G′, D′, Z ′〉

Example 2:Let H be DTLHS in Ex. 1. Given the pred-
icate N that defines the transition relation ofH, function

PtoG computes the following guarded predicate equisatisfi-
able toN . Constraints 3–6 remain unchanged, as they are
linear constraints in a top-level conjunction. The disjunction
9 is replaced first by the following predicates:

z1→(iD≥0 ∧ vD=0) (10) z2→(iD≤0 ∧ vD=Roff iD) (11)

and then by constraints 13–16 below, obtained by moving
arrows inside the conjunctions, as shown by Fact 1. Simi-
larly, disjunctions 7 and 8 are eliminated by introducing four
boolean fresh variables. Summing up, disjunctions 7–9 in
Example 1 are replaced by the conjunction of the following
(guarded) constraints:

z4→(vu=Roff iu) (12)

z2→(vD=Roff iD) (13)

z1→(iD≥0) (14)

z1→(vD=0) (15)

z1→(iD≤0) (16)

z3→(u=1) (17)

z5→(u=0) (18)

z6→(vu=0) (19)

z1+z2≥1 (20)

z3+z4≥1 (21)

z5+z6≥1 (22)

With respect to the statement of Proposition 4, we have that
Z = {z1, z2, z3, z4, z5, z6}, G(X,Z ′) is the conjunction of
guarded constraints 12–19 and original constraints 3–6, and
D(Z) is the conjunction of constraints 20–22.

Algorithm 2 From linear to guarded predicates
Input: P predicate overX
Output: 〈G,D,Z ′, Z〉 whereG is a guarded predicate,

Z ′⊆ Z set of its guard variables,
D(Z) is a guarded predicate over Z

function PtoG(P,X)
1. 〈G,D,Z〉 ←PtoGG(P , X)
2. G′ ← ∅, D′ ← ∅, Z ′ = ∅

3. for all γ ∈ G ∪D do
4. if γ ≡ z1→(. . .→(zn→C(W)) . . .) then
5. w←fresh(), Z←Z ∪ {w}
6. if W ⊆X then G′←G′ ∪ {w→C(W)}
7. elseD′←D′ ∪ {w→C(W)}
8. D′ ← D′ ∪ {w −

∑
i∈[n] zi ≥ 1− n}

9. else if vars(γ)⊆X then
10. G′←G′ ∪ {γ} elseD′←D′ ∪ {γ}
11. return 〈G′, D′, Z ′, Z \ Z ′〉

A. From Guarded to Conjunctive Predicates
Definition 3: Let P (X) be a predicate. A variablex∈X

is said to beboundedin P if there exista, b∈Dx such that
P (X) implies a≤x≤b. A predicateP is bounded if all its
variables are bounded. We writesup(P, x) andinf(P, x) for
the minimum and maximum value that the variablex may
assume in a satisfying assignment forP . WhenP is clear
from the context, we will write simplysup(x) and inf(x).

Given a bounded predicateP (X), a real numbera, and
a variablex ∈ X we write sup(ax) for a sup(x) if a ≥ 0
and for a inf(x) if a < 0. We write inf(ax) for a inf(x) if
a≥ 0 and for a sup(x) if a < 0. Given a linear expression
L(X) =

∑n

i=1aixi over a set of bounded variables, we
write sup(L(X)) for

∑n

i=1sup(aixi) and inf(L(X)) for∑n

i=1inf(aixi).

Proposition 5: Each bounded guarded predicateP (X) is
equivalent conjunctive predicateQ(X).

Proof: The conjunctive predicateQ(X) can be obtained
from the guarded predicateP (X) by replacing each guarded
constraintϕ of the shapez→(L(X)≤b) in P (X) with the
constraintϕ′ = (sup(L(X))−b)z+L(X)≤ sup(L(X)). If
z=0 we haveϕ≡ϕ′ sinceϕ holds trivially andϕ′ reduces
to L(X)≤ sup(L(X)) that holds by construction. Ifz =1
bothϕ andϕ′ reduce toL(X)≤ b. Along the same line of
reasoning, ifϕ has the formz̄→ (L(X)≤b) we pickϕ′ to
be (b−sup(L(X)))z+L(X)≤b.

Together with Prop. 4, Prop. 5 implies that any bounded
predicate can be transformed into an equisatisfiable conjunc-
tive predicate, at the cost of adding new auxiliary boolean
variables, as stated in the following proposition.

Proposition 6: For each bounded predicateP (X), there
exists an equisatisfiable conjunctive predicateQ(X,Z).

Example 3:Let H be the DTLHS in Examples 1 and 2.
We set the parameters ofH as follows:

rL=0.1Ω R=5Ω Vi=15V L=2 · 10−4H

rC =0.1Ω Roff =104 T =10−6secs C=5 · 10−5F

and we assume variables bounds as follows:
−2·104≤vu≤15 −4≤ iL≤4 −1≤vO≤7 −4≤ i′L≤96
−2·104≤vD≤0 −1.1≤v′O≤17 −4≤ iu≤4 −2≤ iD≤4

By first decomposing equations of the shapeL(X) = b in
the conjunctive predicateL(X)≤b∧−L(X)≤−b and then
by applying the transformation given in the proof of Prop. 5,
guarded constraints 14–19 are replaced by the following
linear constraints:

2z1 − iD ≤ 2 (23)

4 · 104z4 + vu − 104iu ≤ 4 · 104 (24)

6 · 104z4 − vu + 104iu ≤ 6 · 104 (25)

−2.104z1 − vD ≤ 2 · 104 (26)

2.104z2 + vD − 104iD ≤ 2.104 (27)

6.104z2 − vD + 104iD ≤ 6.104 (28)

2 · 104z6 + vu ≤ 15 (29)

2 · 104z4 − vu ≤ 2 · 104 (30)

vD ≤ 0 (31)

4z2 + iD ≤ 4 (32)

z5 + u ≤ 1 (33)

−u ≤ 0 (34)

15z6 + vu ≤ 15 (35)

z3 − u ≤ 1 (36)

u ≤ 1 (37)

V. COMPUTING VARIABLE BOUNDS

In this section, we present an algorithm that checks if a
variablex is bounded and that computes an over- and under-
approximation ofsup(x) and inf(x).

Given a guarded predicateG(X,Z), whereZ is the set of
guard variables, for any valuationZ∗, G(X,Z∗) is equiva-
lent to a conjunctive predicate (Prop. 7). A naïve algorithm
to find bounds for a variablex for any valuationZ∗ solves
the MILP problemsoptimalValue(x,max, G(X,Z∗)) and
optimalValue(x,min, G(X,Z∗)). If, for all Z∗ ∈ Bn, x is
bounded inG(X,Z∗) or G(X,Z∗) is unfeasible, thenx
is bounded inG(X,Z). Vice versa, if for someZ∗ ∈ B

n

G(X,Z∗) is feasible andx is not bounded, thenx is not
bounded inG(X,Z). Unfortunately, this exhaustive proce-
dure requires to solve2|Z| MILP problems.

The functioncomputeBoundsin Alg. 3 refines such idea
in order to save unnecessary MILP invocations. If all guard
literals are positive, if an assignmentZ∗

1 makes true more
guards than an assignmentZ∗

2 , then the conjunctive predicate
G(X,Z∗

1) has more constraints thanG(X,Z∗
2) and therefore

if x is bounded inG(X,Z∗
2) then it is also bounded in

G(X,Z∗
1), and ifG(X,Z∗

2) is unfeasible, then alsoG(X,Z∗
1)

is unfeasible (Prop. 7). In the following we establish the
correctness of functioncomputeBounds.

Proposition 7: Let Z = z1, . . . , zn and let G(X,Z) =∧
i∈[n](zi→Ci(X)) be a conjunction of guarded constraints,

where head variables occurs positively. Then:
1) For anyZ∗∈Bn, G(X,Z∗) is equivalent to the con-

junctive predicate
∧

j∈J(Z∗)Cj(X).
2) If Z∗

1 ≤ Z∗
2 , thenG(X,Z∗

2)⇒G(X,Z∗
1).

Proof: Statement 1 easily follows by observing that a
guarded constraintz → C(X) is trivially satisfied if z is
assigned to0 and it is equivalent toC(X) if z is assigned
to 1. Statement 2 follows from the observation thata ≤ b
impliesJ(a)⊆J(b) and henceG(X, b) has more constraints
thanG(X, a).

Definition 4: We say that a setC ⊆ B
n is a cut if for all

b ∈ B
n we haveb ≤ C or b ≥ C. Let D(Z) be a predicate

over a set boolean variablesZ=Z1∪Z2 and let|Z2|=n. A
cut C⊆B

n is (D,Z2)-minimal, if for all c∈C D(Z1, c) is
satisfiable, and for allb<C D(Z1, b) is not satisfiable.

To verify that a variable is boundedG(X,Z ′) ∧ D(Z),
whereG is a guarded predicate with positive guards in the
setZ ′⊆Z andD(Z) is a conjunctive predicate, it suffices to
check if it is bounded in the conjunctive predicateG(X, c),
for all c that belong to a(D,Z ′)-minimal cut.

Algorithm 3 Computing variable bounds in predicate

Input: 〈G,D,X,Z ′, Z, x〉 whereG is a guarded predicate,
Z ′⊆ Z set of its guard variables,x∈X a variable,
D(Z) is a conjunctive predicate over Z

Output: 〈b, inf, sup〉, whereb ∈ {B, ¬B, ¬F}.
If b = B, G(X,Z)⇒ inf ≤ x ≤ sup

function computeBounds(G,D,X,Z ′, Z ′′, x)
1. C←∅, r←|Z ′|, inf←+∞, sup←−∞, f←FALSE

2. r′←optimalValue(min,
∑

i∈[r] zi, D(Z))
3. r′′←optimalValue(max,

∑
i∈[r] zi, D(Z))

4. for k = r′ to r′′ do
5. end = TRUE

6. for all b ∈ B
r
k do

7. if C 6≤b then end← FALSE else continue
8. if feasible(D(Z, c)) thenC�C ∪{b} else continue
9. if feasible(G(X, b)) then

10. f ←TRUE

11. M ← optimalValue(max, x, G(X, b))
12. m ← optimalValue(min, x, G(X, b))
13. if M=∞ or m=∞ then return 〈¬B, _, _ 〉
14. sup ← max(sup, M), inf ← min(inf, m)
15. if end then break
16. if f then return 〈B, inf, sup〉 else return 〈¬F, _, _〉

Proposition 8: Let Q(X,Z) =G(X,Z ′) ∧ D(Z), where
G is a guarded predicate such that guard variables inZ ′⊆Z
occur positively andD is a conjunctive predicate. LetC be
a (D,Z ′)-minimal cut andx ∈ X. If, for all c ∈ C, x is
bounded inG(X, c) thenx is bounded inQ(X,Z).

Proof: SinceC is a(D,Z ′)-minimal cut, any satisfying
assignment(X∗, Z∗) to Q is such thatC ≤ Z ′∗. As a
consequence, there existsc∈C such thatc≤Z ′∗. Prop. 7.2
implies thatmax{x | G(X,Z∗)}≤max{x | G(X, c)} and
min{x | G(X,Z∗)}≥min{x | G(X, c)}. Therefore ifx is
bounded inQ(X, c) for any c ∈ C, then it is bounded in
Q(X,Z).

Stemming from Proposition 8, functioncomputeBounds
(Alg. 3) checks if a variablex is bounded in a guarded pred-
icate by finding a minimal cut. To limit the search space, in
line 2 (resp. line 3) it is computed the minimum (resp. maxi-
mum) number of 1 that a satisfying assignment to the predi-
cateD(Z) must have. The loop in lines 4–16 examines pos-
sible assignments to guard variables inZ, keeping the invari-
ant ∀b<C¬feasibleG(X, b) ∧ ∀b≥Cmax{x | G(X,Z)}≤
max{x |G(X, b)}∧min{x |G(X,Z∗)}≥min{x |G(X, b)}.
In the loop in lines 6–14, if the assignmentc under consid-
eration is greater than an assignment inC, no further inves-
tigation are needed (by Prop. 8x is bounded inQ(X, c)). If
D(Z\Z ′, b) is unfeasible, the assignmentc is not relevant,
becausec≤C, for any(D,Z ′)-minimal cutC. Otherwise,c
is a relevant assignment and it is added toC (line 8). If x is
unbounded inQ(X, c) (lines 11 and 13) we can immediately
conclude thatx is unbounded inQ(X,Z). Otherwise, we
update the approximations computed forinf(x) andsup(x)
(line 14). If for all assignments inc ∈ B

n
k we havec ≥ C

(Bn
k is a cut) we are done,C is a (D,Z ′)-minimal cut, and

inf and sup computed so far are over-approximation ofx
bounds inQ(X,Z) (line 15).

Algorithm 4 From predicates to conjunctive predicates
Input: P predicate overX
Output: 〈b, C〉, b ∈ {B, ¬B, ¬F}.

If b = B, thenC ≃ P
function PtoC((P,X))

1. 〈G,D,Z ′, Z ′′〉 ←PtoG(P,X)
2. D′ ←GtoC(D,Z ′ ∪ Z ′′, 〈0,1〉)
3. for all x ∈ X do
4. 〈µ,mx,Mx〉 ←computeBounds(G,D′, X, Z ′, Z ′′, x)
5. if µ 6=BOUNDED then return 〈µ,∅〉
6. return 〈µ,GtoC(G,X ∪ Z ′ ∪ Z ′′, 〈m,M〉)

Example 4: In Ex. 3 we assumed bounds for each vari-
able in the DTLHSH introduced in Example 1. Such bounds
has been obtained by fixing bounds for state variablesiL and
vO and for variablesvD and iD, and by computing bounds
for variablesi′L, v′O, iu, andvu using Alg. 3.

The functionPtoC in Alg. 4 presents the overall procedure
that transforms a bounded predicate into an equisatisfiable
conjunctive predicate. It calls functions in Algs. 1–3 and
the functionGtoC that performs predicate transformations
given in the proof of Prop. 5. As a first step, Alg. 4 translates
a predicateP (X) into an equisatisfiable guarded predicate
G(X,Z ′) ∧D(Z ′, Z ′′) by calling the functionPtoG. Since
boolean variables are trivially bounded (bounds are vectors
0 = 〈0, . . . , 0〉 and 1 = 〈1, . . . , 1〉), the guarded predicate

D can be transformed into a conjunctive predicateD′ by
calling the functionGtoC onD. To apply functionGtoC on
G(X,Z ′), we need bounds for each variable inX. These
bounds are computed by calling|X| times the functioncom-
puteBoundsand are stored in the two arraysm,M . If the
functioncomputeBoundsfinds thatG′ is unfeasible or some
x is not bounded inG′, the empty constraint is returned
together with the failure explanation. Otherwise, the desired
conjunctive predicate is returned.

VI. M ODELING ISSUES

The disjunction elimination procedure given in Alg. 4
returns a guarded predicate that may contain a large number
of fresh auxiliary boolean variables and this may heavily
impact on the effectiveness of control software synthesis
or verification. On the other hand, guarded predicates are
themselves a natural language to describe DTLHS behavior:
assignments to guard variables play a role similar to modes
in hybrid systems and, by using negative literals as guards,
we can naturally model different kinds of plant behavior
according to different commands sent by actuators.

Example 5:Disjunctions 7–9 in Ex. 1 can be replaced by
the conjunction of the following (guarded) constraints:
q→vD=0 (38)

q→ iD≥0 (39)

u→vu=0 (40)

q̄→vD≤0 (41)
q̄→vD=Roff iD (42)

ū→vu=Roff iu (43)
The resulting model for the buck DC-DC converter is

much more succinct than the guarded model in Ex. 2 and it
has two guard variables only, rather than six as in Ex. 2.

Alg. 3 cannot be directly applied to guarded predicates
with both positive and negative guard literals. This obstruc-
tion can be easily bypassed, by observing that a guarded
constraintz̄→ C(X) can is equisatisfiable to the guarded
predicate(z′→ C(X)) ∧ (z′+z = 1). This transformation
may double the number of guard variables and hence make
the application of Alg. 3 less effective than an exhaustive
algorithm on the original model with positive and negative
guard literals (see experimental results in Section VII). Sum-
ming up, guarded predicates turn out to be a powerful and
natural modeling language for describing DTLHS transition
relations. We end this section by proposing a syntactic check,
that most of the time may be used to compute variable
bounds avoiding to use the functioncomputeBounds.

Definition 5: A variablex is explicitly boundedin a pred-
icateP (X), if P (X) =B(x) ∧ P ′(X), whereB(x) = x≤
b ∧ x≥a, for some constantsa andb.

Proposition 9: Let H= (X,U, Y,N) be a DTLHS such
that each variablev∈X∪U ∪Y is explicitly bounded inN ,
and for allx′∈X ′ there are inN at least two constraints of
the formx′≥L1(X,U, Y) andx′≤L2(X,U, Y). ThenN
is bounded.

Proof: Since all variables inX, U , andY are explic-
itly bounded inN , they are also bounded inN . Therefore
inf(L1(X,U, Y)) andsup(L2(X,U, Y)) are finite. SinceN
is guarded, it is a conjunction of guarded constraints and for
all x′ ∈ X ′ it can be written asx′

1 ≥ L1(X,U, Y) ∧ x′
1 ≤

L2(X,U, Y) ∧N ′(X,U, Y,X ′) for a suitable predicateN ′.

This implies inf(L1(X,U, Y)) ≤ x′ ≤ sup(L2(X,U, Y)),
which in turn implies thatx′ is bounded inN .

Example 6:Let H1 be the DTLHS ({x}, {u},∅, N1),
whereN1(x, u, x

′)=(0≤x≤3)∧(0≤u≤1)∧(x′= x+3u).
By Proposition 9,H1 is bounded withinf(x′) = 0 and
sup(x′)=6. All other variables are explicitly bounded inN .
Explicit bounds on present state and input variables do not
imply that next state variables are bounded. As an example,
let us consider the DTLHSH2 = ({x}, {u},∅, N2), where
N2(x, u, x

′) = (0 ≤ x ≤ 3) ∧ (0 ≤ u ≤ 1) ∧ (x′ ≥ x+3u).
Since, for any value ofx and u, x′ can assume arbitrary
large values, we have thatH2 is not bounded.

VII. E XPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our predi-
cate transformation algorithmPtoC. We implemented Alg. 4
in C programming language, using GLPK to solve MILP
problems. We present the experimental results obtained by
using PTOC on an-inputs buck DC-DC converter, that we
model with three DTLHSsHi=(Xi, Ui, Yi, Ni), with i∈ [3],
s.t. X1 =X2 =X3, U1 = U2 = U3, Y1 ⊂ Y2 ⊂ Y3, N1 is a
predicate(Section II-A),N2 andN3 areguarded predicates
(Section IV) and guards inN3 are positive only.

We then run PTOC on Hi for increasing values ofn
(which entails that the number of guards increases), in order
to show effectiveness of PTOC. Namely, in Section VII-A1
we show experimental results for the whole algorithm in
Alg. 4. Furthermore, in Section VII-A2 we show that exploit-
ing knowledge of the system and modeling it with guarded
predicates we obtain better results than those in Section VII-A1.
To this aim, we suppose that predicatesG, D′ and variables
setsX,Z ′, Z ′′ in Alg. 4 may be directly given as an input
to functionPtoC (thus lines 1 and 2 in Alg. 4 are skipped).

Both in Section VII-A1 and VII-A2 we compare the com-
putation time of functionPtoC against functionPtoCexh,
which may be obtained from Alg. 4 by replacing the call to
functioncomputeBounds(our bottleneck here) in line 4 with
the naïve algorithm which exhaustively checks all possible
assignments to guard variables (see Section V). To this aim,
also PtoCexh has been implemented inside PTOC. As for
PtoC, also for PtoCexh it is possible to directly specify
predicatesG, D′ and variables setsX,Z ′, Z ′′.

A. Multi-Input Buck DC-DC Converter

A Multi-Input Buck DC-DC converter [16] (Figure 2),
consists ofn power supplies with voltage valuesV1<. . .<
Vn, n switches with voltage valuesvu1 , . . . , v

u
n and current

valuesIu1 , . . . , I
u
n , andn input diodesD0, . . . , Dn−1 with

voltage valuesvD0 , . . . , vDn−1 and current valuesiD0 , . . . , iDn−1

(in the following, we will also writevD for vD0 and iD for
iD0). As for the converter in Ex. 1, the state variables are
iL and vO, whereas action variables areu1, . . . , un, thus a
control software for then-input buck dc-dc converter has
to properly actuate the switchesu1, . . . , un. Constant values
are the same given in Ex. 3.

R

+vO
L

iD

Vn

Vn−1

Vi

V1

I
u
n

I
u
n−1

I
u
i

+v
u
n

un

D0

D1

Di

Dn−1

iL rL

+vC C

rCiC

+v
u
i

un−1

ui

+vD

...

...

I
u
1

+v
D
1

+v
D
i

+v
u
n−1 +v

D
n−1

+v
u
1 u1

Figure 2. Multi-input Buck DC-DC converter

Table I
PTOC PERFORMANCES(PREDICATES)

n r r′ r′′ k |cut| CPUr CPUe

2 12 6 12 11 64 1.48e+00 1.13e+02
3 18 9 18 17 512 8.33e+01 1.35e+04
4 24 12 24 23 4096 8.73e+03>1.38e+06

1) Multi-Input Buck as a Predicate:We model then-
input buck DC-DC converter with the DTLHSH1=(X1, U1,
Y1, N1), whereX1 = iL, vO, U1 = u1, . . . , un, and Y1 =
vD, vD1 , . . . , vDn−1, iD, Iu1 , . . . , I

u
n , v

u
1 , . . . , v

u
n. From a sim-

ple circuit analysis (e.g., see [15]), we have that state vari-
ables constraints are the same as Eqs. (3) and (4) of the
converter in Ex. 1. Analogously, as for the algebraic con-
straints, we have that Eq. (9) in Ex. 1 also holds for the
n-inputs converter. In addition to Eqs. (3), (4) and (9) of
Ex. 1, the Eqs. (45)–(48) below must hold.
∧

i∈[n]

(ui=0)∨(vui =0) (44)
∧

i∈[n]

(ui=1) ∨ (vui =RoffI
u

i) (45)

∧

i∈[n−1]

((Iui ≥0)∧ (vDi =0))∨ ((Iui ≤0)∧ (vDi =RoffI
u

i)) (46)

iL= iD+

n∑

i=1

I
u

i (47)
∧

i∈[n−1]

vD=v
u

i+v
D

i −Vi∧vD=v
u

n−Vn (48)

N1 also contains the following explicit bounds:−4≤ iL≤
4 ∧ −1≤ vO ≤ 7∧ −103 ≤ iD ≤ 103 ∧

∧n

i=1−10
3 ≤ Iui ≤

103 ∧
∧n

i=1−10
7 ≤ vui ≤ 107 ∧

∧n−1
i=0 −10

7 ≤ vDi ≤ 107.
We call functionPtoC with parametersN1, X1 ∪U1 ∪Y1

for increasing values ofn, and we compare its computation
time with that of functionPtoCexh. Table I shows our ex-
perimental results. In Table I, columnn shows the number
of buck inputs, columnr shows the number of guards (see
line 1 of Alg. 3), columnsr′, r′′ have the meaning given in
lines 2 and 3 of Alg. 3, columnk gives the value ofk at the
end of the for loop of Alg. 3, column|cut| gives the size of
cut at the end of the for loop of Alg. 3, and columnCPUr

(resp.CPUe) shows the computation time in seconds of
function functionPtoC (resp.PtoCexh). Table I shows that
heuristics implemented in functioncomputeBoundsgreatly
speeds-up variable bounds computation.

2) Multi-Input Buck as a Guarded Predicate:We mod-
ify the DTLHS H1 of Section VII-A1 by definingH2 =
(X2, U2, Y2, N2), whereX2 = X1, U2 = U1, Y2 = Y1 ∪
Y ′
2 = Y1 ∪ {q0, . . . , qn−1} andN2 is obtained fromN1 by

replacing Eqs. (9) and (45)–(48) with Eqs. (38)–(43) (where
q = q0, see Section VI), and by adding the following ones
(i∈ [n− 1]):

Table II
PTOC PERFORMANCES(GUARDED PREDICATES)

n r r′ r′′ k |cut| CPUr CPUe

4 16 8 8 8 256 1.17e+01 1.24e+01
5 20 10 10 10 1024 1.55e+02 6.93e+01
6 24 12 12 12 4096 2.65e+03 3.78e+02

qi→v
D

i =0 (49)

qi→I
u

i ≥0 (50)

ui→v
u

i =0 (51)

q̄i→v
D

i ≤0 (52)

q̄i→v
D

i =RoffI
u

i (53)

ūi→v
u

i =RoffI
u

i (54)

Finally, we defineH3 = (X3, U3, Y3, N3), whereX3 =
X2 = X1, U3 = U2 = U1 and N3 is obtained fromN2

by eliminating negative guards as described in Section VI.
This introduces2n additional auxiliary variables to manage
negations ofq0, . . . , qn−1, u1, . . . , un, thusY3 = Y2 ∪ Y

′
3 =

Y2 ∪ {q
′
0, . . . , q

′
n−1, u

′
1, . . . , u

′
n}.

For i = 2, 3, let constraints inNi be partitioned inGi and
Di s.t. Gi contains all guarded constraints inNi. We call
function PtoC with parametersG3, D3, X3 ∪ U3 ∪ Y1, Y

′
2 ∪

Y ′
3 ,∅ for increasing values ofn, and we compare its com-

putation time with that of functionPtoCexhwith parame-
ters G2, D2, X2 ∪ U2 ∪ Y1, Y

′
2 ,∅ Note thatG3 only con-

tains positive-guarded constraints, thus it is possible tocall
function PtoC on it. On the other hand,G2 also contains
negative-guarded constraints, thus it cannot be passed to
function PtoC, whilst it can be managed by functionPto-
Cexh.

Table II shows our experimental results. Columns mean-
ing in Table II are the same as of Table I. Predicate transla-
tion on the multi-input buck dc-dc model given as guarded
predicate is much faster due to a smaller number of auxiliary
variables (and constraints). The negative impact of auxiliary
boolean variables is clearly showed by the fact that function
PtoCexh, much slower than functionPtoC on a model of the
same size, performs better thanPtoC in this case, because
it can work on a model with half of the variables. This
phenomenon would be greatly amplified in a verification or
control software synthesis procedure. These results strongly
support guarded predicates as modeling language.

VIII. C ONCLUSIONS

The results presented in this paper contribute to Model
Based Design of embedded software by proposing an ex-
pressive modelling language for discrete time linear hybrid
systems. Indeed, MILP based abstraction of a DTLHS have
been used to synthesize correct-by-construction control soft-
ware that implements a quantized controller. They require
DTLHS dynamics modeled as a conjunctive predicate over
state, input, and next state variables.

In this paper, we circumvented such a limitation, by giving
an automatic procedure that transforms any predicate into
an equisatisfiable conjunctive predicate, provided that each
variable ranges over a bounded interval. Moreover, we have
presented an algorithm that, taking a linear predicateP and
a variablex, verifies if x is bounded inP , by computing
(an over-approximation of) bounds forx.

Finally, our experimental results show the effectiveness
of our algorithms. Most notably, they show that guarded
predicates may turn out to be a natural language to describe
succinctly DTLHS dynamics.

REFERENCES

[1] T. A. Henzinger and J. Sifakis, “The embedded systems
design challenge,” inFM, ser. LNCS 4085, 2006, pp. 1–15.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,
P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine,
“The algorithmic analysis of hybrid systems,”Theoretical
Computer Science, vol. 138, no. 1, pp. 3 – 34, 1995.

[3] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic
verification of embedded systems,”IEEE Trans. Softw. Eng.,
vol. 22, no. 3, pp. 181–201, 1996.

[4] A. Bemporad and M. Morari, “Verification of hybrid systems
via mathematical programming,” inHSCC, 1999

[5] F. Mari and E. Tronci, “CEGAR based bounded model
checking of discrete time hybrid systems,” inHSCC, 2007

[6] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV, ser. LNCS 6174, 2010, pp. 180–195.

[7] F. Torrisi and A. Bemporad, “HYSDEL — A tool for gener-
ating computational hybrid models for analysis and synthesis
problems,”IEEE Transactions on Control System Technology,
vol. 12, no. 2, pp. 235–249, 2004.

[8] S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke,
“Reachability for linear hybrid automata using iterative re-
laxation abstraction,” inHSCC, ser. LNCS 4416, 2007, pp.
287–300.

[9] F. S. Hillier and G. J. Lieberman,Introduction to operations
research. McGraw-Hill Inc., 2001.

[10] D. Sheridan, “The optimality of a fast cnf conversion and its
use with sat,” inSAT, 2004.

[11] A. Kobetski and M. Fabian, “Scheduling of discrete event
systems using mixed integer linear programming,” inDiscrete
Event Systems, 2006

[12] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “En-
abling on-chip switching regulators for multi-core processors
using current staggering,” inASGI, 2007.

[13] W.-C. So, C. Tse, and Y.-S. Lee, “Development of a fuzzy
logic controller for dc/dc converters: design, computer simu-
lation, and experimental evaluation,”IEEE Trans. on Power
Electronics, vol. 11, no. 1, pp. 24–32, 1996.

[14] V. Yousefzadeh, A. Babazadeh, B. Ramachandran, E. Alar-
con, L. Pao, and D. Maksimovic, “Proximate time-optimal
digital control for synchronous buck dc–dc converters,”IEEE
Trans. on Pow. El., 23(4), 2008

[15] P.-Z. Lin, C.-F. Hsu, and T.-T. Lee, “Type-2 fuzzy logic
controller design for buck dc-dc converters,” inFUZZ, 2005,
pp. 365–370.

[16] M. Rodriguez, P. Fernandez-Miaja, A. Rodriguez, and J. Se-
bastian, “A multiple-input digitally controlled buck converter
for envelope tracking applications in radiofrequency power
amplifiers,” IEEE Trans on Pow. El., 25(2), 2010

