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Abstract—Model Based Design is particularly appealing in is defined as a linear predicate (i.e., a boolean combination
embedded software design where system level specifications are of linear constraints) on its continuous as well as discrete
much easier to define than the control software behavior itself. (modes) variables. A large class of hybrid systems, incigdi

Formal analysis of Embedded Systems requires modelling both . 9 .
continuous systems (typically, the plant) as well as discrete mixed-mode analog circuits, can be modeled using DTLHSs.

systems (the controller). This is typically done usingHybrid ~ System level safety as well as liveness specifications are
Systems. Mixed Integer Linear Programming (MILP) based modeled as set of states defined, in turn, as linear predicate
abstraction techniques have been successfully applied to au-  |n [6], stemming from a constructive sufficient condition

tomatically synthesize correct-by-construction control softvare for the existence of a quantized sampling controller for an

for Discrete Time Linear Hybrid System, where plant dynamics .
is modeled as a linear predicate over state, input, and next SBCS modelled as a DTLHS, we presented an algorithm

state variables. MILP solvers requires constraints represented  that, given a DTLHS modeH for the plant, a quantization
as conjunctive predicates. In this paper we show that, undertt schema (i.e., how many bits we use for AD conversion) and
hypothesis that each variable ranges over a bounded interval, system level specifications, returns correct-by-consiiac
any linear predicate built upon conjunction and disjunction o antized feedbackontrol software(if any) meeting the

of linear constraints can be automatically transformed into an . e . X
equisatisfiable conjunctive predicate. Moreover, since variable given system level specifications. The synth_eS|_s algorithm
bounds play a key role in this transformation, we present an  rests on the fact that, because of the quantization process,

algorithm that taking as input a linear predicate, computes  the plantP is seen by the controller asNondeterministic

implicit variable bounds. Finite State AutomatofNFSA) P, that is an abstraction
Keywords-Model-based software design; Linear predicates; Of . The NFSAP is computed by solving/ixed Integer
Hybrid systems Linear ProgrammingMILP) problems, and thus it requires

the DTLHS dynamics given as a conjunctive predicate, i.e.,
a conjunction of linear constraints.

Many Embedded Systems afoftware Based Control This paper is motivated by circumventing such a limita-
SystemgSBCSs). An SBCS consists of two main subsys-tion, by showing that, under the hypothesis that each viariab
tems: thecontroller and theplant Typically, the plant is ranges over a bounded interval, any linear predicate can be
a physical system consisting, for example, of mechanicatepresented by an equivalent conjunctive predicate.
or electrical devices, while the controller consists of con Bounds on variables that describe DTLHS behaviour is
trol software running on a microcontroller. In an endlessa reasonable hypothesis. Usually, control software drives
loop, eachT” seconds (sampling time), the controller, afterthe plant towards a goal, while keeping it inside a given
an Analog-to-Digital (AD) conversion (quantization), reads bounded admissible region. Bounds on present state vari-
sensor outputs from the plant and, possibly aftBigital-to-  ables essentially model treensing regionthat is the range
Analog(DA) conversion, sends commands to plant actuatorsof values observable by the sensors, that usually is a bounde
The controller selects commands in order to guarantee thagctangular region (i.e., the Cartesian product of bounded
the closed loop systenfthat is, the system consisting of intervals). Bounds on controllable input variables model t
both plant and controller) meets given safety and livenesactuation region that is the range of values of commands
specifications $ystem Level Specifications that the actuators may send to the plant and it is also

Software generation from models and formal specificatypically a bounded rectangular region. Non-state vaeisbl
tions forms the core oModel Based Designf embedded may model both non-observable plant state variables and
software [1]. This approach is particularly interesting fo uncontrollable inputs (i.e., disturbances). Therefomriuls
SBCSs since in such a case system level specifications ao& such variables are usually implied by bounds on state
much easier to define than the control software behaviovariables or by reasonable assumptions about disturbances
itself. Correct-by-construction software generation a#l as 1) Our Main Contributions: In this paper we give an
formal verification of system level specifications for SBCSsalgorithm to transform any linear predicate into an equi-
requires modelling both the continuous subsystem (the)plansatisfiable conjunctive predicate, under the hypothesis th
and discrete systems (the controller). This is typicallpelo each variable ranges over a bounded interval. This allows a
using Hybrid Systemge.g., see [2][3]). MILP based abstraction technique to be applied on a wider

Discrete Time Linear Hybrid Systenf@TLHSs) [4][5] class of DTLHSs (Section IIl) with respect to [6].
provide an expressive model for closed loop systems: a We consider predicates built upon linear constraints, (i.e.
DTLHS is a discrete time hybrid system whose dynamicsnequalities of the shap&_.  a,z; < b, Section II),

I. INTRODUCTION



conjunctions and disjunctions. First, we show that, at theA. Predicates
price of introducing fresh boolean variables, a predicate A jinear expressionL(X) = S" La:z; is a linear
e

can be transformed into an equisatisfiaplmrded predicate  compination of variables inX with rational coefficients.

(Section 1V), that is a conjunction of guarded constraints,n ¢onstraint is an expression of the fornL(X) < b

. . n — 1

i.e., constraints of the shape— (3_;_; aiz; <b). Then,  \wherep is a rational constant. We writd(X) > b for

assuming that each variable ranges over a bounded mtervaLLQQ <—b, L(X)=b for (L(X)< b) A (—L(X)<—b),

we show that any guarded constraint can be in turn transandagi(X)gb for (L(X)<b) /\_(L(X)Za). B

formed into aconjunctive predicatei.e., a conjunction of Predicatesare inductively defined as follows. A constraint

linear constraints (Section IV-A). Conjunctive predicasee C(X) is a predicate overX. If A(X) and B(X) are

the input language of MILP solvers. Finally, in Section V, predicates, theA(X) A B(X)) and (A(X) vV B(X)) are

we give an algorithm that computes bounds for a variable predicates ovelX. Parentheses may be omitted, assuming

in a given guarded predicaté'(X), i.e., either it returns 54| associativity and precedence rules of logical opesat

two valuesm,, M, € R such that if G(X) holds, then A conjunctive predicatés a conjunction of constraints.

mg << M,, or it concludes that such values do not exist. A valuationover X is a function that maps each variable

An evaluation of such algorithm is in Sections VI and VII. ;. c x tg a valuev(z) in D,. We denote withX* € Dy

A. Related Work the sequence of valuegz), ... ,v(a:n_). Given a predicate
Mixed Integer Linear Programming (MILP) solving based P(Y, X), P(Y, X*) denotes the predicate obtained by sub-

abstraction techniques have been designed for the verifflituting each occurrence af with v(z). We call valuation
cation of Discrete Time Hybrid Automata (DHA) [4] and also the sequence of valuéﬁ. A*satlsfylng ass'?”me""
implemented within the symbolic model checker HYSDEL & Predicate’(X) is a valuationX™ such that(X™) holds.
[7]. A MILP based DTLHS abstraction algorithm is the We denote withP also the set of satisfying assignments to

core of automatic control software synthesis from s:ystenjihe pre_dlcath. P(X) andQ(X) are eq%"V?'e”I notation
level specifications in [6], and it requires DTLHS dynamicsPEQ’ if they have the same set of satl_sfymg assignments.
modeled as a conjunctive predicate. The same limitation oc.P(X)_ apd Q(.Z) are equ|.sat|'sf|abI.e notanonP ~Q, it P
curs in abstraction techniques based on the Fourier-Motzki'S Satisfiable if and only it is satisfiable.
procedure for existential quantifier elimination [8]. B. Mixed Integer Linear Programming

The automatic procedure that we present here to transform A Mixed Integer Linear ProgrammingMILP) prob-
any linear predicate into an equisatisfiable conjunctieslpr €M with decision variablesX is a tuple (max, J(X),
cate is reminiscent of Mixed Integer Programming modelingA(X)) where X is a list of variables,/(X) (objective
techniques [9] in Operations Research and boolean formulinction is a linear expression ovek, and A(X) (con-
transformations involved in the conversion of a formulaint Straints is a conjunctive predicate oveX. A solution to
a conjunctive or disjunctive normal form [5][10]. (max, J(X), A(X)) is a valuationX™ such thatA(X™)

Finally, an automatic convertion procedure targeting a@ndVZ (A(Z) — (J(Z) < J(X7))). J(X™) is the optimal
MILP formulation for automatic synthesis of schedules isvalueof the MILP problem. Afeasibility problem is a MILP
presented in [11], where the starting point is a deternimist Problem of the form(max,0, A(X)). We write alsoA(X)

finite automaton rather than a linear predicate. for (max,0,A(X)). In algorithm outlines, MILP solver
invocations are denoted by functideasibld A(X)) that re-

o Il BASIC DEFINITIONS turns TRUE if A(X) is satisfiable and ALSE otherwise, and
An initial segment{1,...,n} of N is denoted byin]. We by function optimalValuémax, J(X), A(X)) that returns
denote withX = z1,...,x, a finite sequence of distinct either the optimal value of the MILP problerméx, J(X),

variables, that we may regard, when convenient, as a sefi(X)) or o if such MILP problem is unbounded. We write
Each variable: ranges on a known (bounded or unbounded)(min, J(X), A(X)) for (max, —J(X), A(X)).

interval D, either of the reals (continuous variables) or of

the integers (discrete variables). The Bgt. D, is denoted Il. DISCRETETIME LINEAR HYBRID SYSTEMS

by Dx. Boolean variables are discrete variables ranging on Discrete Time Linear Hybrid Systeni®TLHSS) provide

the setB = {0,1}. If = is a boolean variable we write  a suitable model for many embedded control systems since

for (1—x). The sequence of continuous (discrete, booleanjhey can effectively model linear algebraic constraints in

variables inX is denoted byX" (X¢, X?). volving both continuous as well as discrete variables. In
The set of sequences af boolean values is denoted by Ex. 1, we present a DTLHS model of a buck DC-DC con-

B". The sefB} CB" denotes sequences that contains exactlyerter, i.e., a mixed-mode analog circuit that converts the

k elements equal ta. Givena,bcB™ we say thatu <b if DC input voltage to a desired DC output voltage.

a is point-wise less or equal th i.e., if for all i € [n] we Definition 1: A Discrete Time Linear Hybrid Systeis a
have thata; <b;. Given a setB CB™ anda € B" we write  tuple’ = (X, U, Y, N) where:
a < B if there existsh € B such thats <b anda > B if there X = X"U X is a finite sequence of real and discrete

existsb € B such thatu >b. We denote with/(b) be the set present stateariables.X’ denotes the sequencerwéxt state
of indexes such thali; =1, i.e., J(b)={j€[n] | b;=1}. variables obtained by decorating wittvariables inX.



IV. FROM LINEAR TO CONJUNCTIVE PREDICATES

As shown in [6], MILP solvers can be used to build a
suitable discrete abstraction of a DTLHS. As mentioned in
Section II-B, MILP solvers require constraints represédnte
as conjunctive predicates. In this section, we show how this
limitation can be circumvented. We proceed in two steps.

,:igure‘l_ Buck DC-DC converter First, in Section IV, we introducguarded predicatesnd
we show that each predicate can be transformed into an
U =U"uUU4is a finite sequence dhput variables. equivalent guarded predicate at the price of introducing ne

Y = Y"UY4is a finite sequence afuxiliary variables. ~ auxiliary boolean variables. Then, in Section IV-A, we show
Aucxiliary variables typically modelsnodes(switching ele-  that, under the hypothesis that each variable ranges over

ments) oruncontrollable inputge.g., disturbances). a bounded interval, each guarded predicate can be in turn
N(X,U,Y, X')is a predicate oveK UUUY UX" defining transformed into an equivalent conjunctive predicate.
the transition relation(next stat® of the system. 1) Guarded Predicates:

Definition 2: Given a predicaté’(X) and a fresh boolean

Example 1: The buck DC-DC converter is a mixed-mode variable 2 ¢ X, the predicate: — P(X) (resp.z —» P(X))

analog circuit (Figure 1) converting the DC input voltadé ( denotes the predicate —0) v P(X) (resp.(z— 1)\ P(X)).

in Figure 1) to a desired DC output voltages(in Figure . - .
1). Buck DC-DC converters are used off-chip to scale dowr]\?ve;gg)z tizegu?(r)?]gt?giar‘:g?;? bgth;rggii'; t%u?);d tlrllteer?(l)srm

the typical laptop battery voltage (12-24) to the just few A . X
e — C(X) or z — C(X) is called guarded constraint
volts needed by the laptop processor as well as on-chip té generalized guarded constrairat predicate of the form

supportDynamic Voltage and Frequency Scali(@VFS) in .
multicore processors. Because of its widespread use,atontr®! (22 = ... = (20 = C(X))..) A guarded predicate
schemes for buck DC-DC converters have been widely stud(r.eSp' generalllzedguarded predicate) s a conjunction (.)f
ied (e.g., see [L2][13][14]). The typical software based ap either constraints or guarded constraints (resp. geaerhl
proach is to control the switchin Figure 1 (typically imple- guarde_d anstralnts). . .

mented with a MOSFET) with a microcontroller. The circuit 10 Simplify proofs and notations, without loss of general-
in Figure 1 can be modeled as a DTLK¥8= (X, U,Y, N). ity, we always assume guard literals distinct: a conjumctio
The circuit state variables aig andve. However we can = — C1(X) A z = C»(X) is equisatisfiable to the guarded
also use the paiiz, vo as state variables i model since  Predicatez; = Cy(X) Az = Co(X) Az =2 N 22 =2 (21, 22

there is a linear relationship betwean ve andvo, namely: fres_h bo_olean variables)_. Moreover, in algorithm outlin_es
_ rcR iL+TCIiRUc- Such considerations lead us to the conjunctive predicates will be regarded as sets of comsrai

vo= rc+R i i !
following DTLHS modelH: X — X" —i, v, U=U—u By applying standard propositional equivalences, we have
A TA 7L Yo, B =Y = the following facts.

Y =Y'W¢whereY" =i,,v,,ip,vp andY % =gq. Note how _ . .

‘H auxiliary variablest” stem from the constitutive equations FE_iCtl L tA; ptrhed|cated01:j the ;@”‘Z - /\iE[}g] ]}(X) 1S

of the switching elements (i.e., the switaland the diode D qugg t;n Aogerfe?;nazreg gﬂ;er dlecgﬁ?:%[g]s(tﬁrzaﬁai i ())' .

in Figure 1). From a simple circuit analysis (e.g., see [15 ' . N 2

in Figure 1) 'mple cired ysis (e.9 (15D — (2, — C(X))...) is equisatisfiable to the guarded

h the followi tions: o :
we have the Toflowing equations predicate(z—5_ zi>1l—n)A(z—C(X)), wherez is

L = @it a12v0 +a1sUp () 3 fresh boolean variable
Vo = az1ir+ a22V0 + a23VD () Proof: Let z be a fresh boolean variable. We have:
where the coefficients; ; depend on the circuit parameters *1 (2.2 (22 C(X))...)
R, 7o, 7o, L and C as follows: a:,1 = —7¢, aLQR: A ~ 2 A/\Zz /\/\. . /\AZZ _;C;())i)(z%(](X))
a1,3:—%,a271: ﬁ[_Tc£L+%],a2,2:ﬁ[%+%], ; _1 _2 “n
__T R g di . del with i =(Z1VZ2V...VzZ,V2)A (2= C(X))
az3=—1 ;- Using a discrete time model with sampling ~ _ (1—21)+(1—22) 4+ A+ (1—20) 42> 1 A (2= C(X))
time 7 and writingz’ for (¢ + 1), we have: = (2% [ ]z->1—n) A (z—C(X)) ™
. . - 1€n 1
iy = (1+Ta1y)ip +Taizvo + Tarzop  (3) Lemma 3: Any predicateP (X)) is equisatisfiable to a pred-
vy = Tasyip+ (1+ Tass)vo + Tassvp. (4)  icate Q(X,Z) = G(X,Z) A D(Z), where G and D are

egeneralized guarded predicates afds the set of boolean
variables that occur positively as guardsGn
Proof: By induction on the structure of the predicate

The algebraic constraints stemming from the constitutiv
equations of the switching elements are the following:

oo = vV (5) (w=1) Vv (vu=Rowin) (7)  p(X). If P(X) is a constraint or a conjunction, the state-
ip = ir—iu (6) (u=0) vV (vu=0) (8)  ment easily follows from inductive hypothesis.
((ip > 0) A (vp =0)) V ((ip <0) A (vp = Rorip))  (9) Let P(X) be the disjunction?; (X) v P»(X). By induc-

The transition relationV of H is given by the conjunction tive hypothesis, there exist two generalized guarded predi
of the constraints in Egs. 3-9. cates@Q1 (X, Z1)=G1(X,Z1) A D1(Z1) and Q2(X, Z2) =



Go(X, Zs) AN Do(Z3) such thatP (X) ~ Q1(X,Z;) and  PtoG computes the following guarded predicate equisatisfi-
Py (X)~Q2(X, Z3). We can always choose auxiliary boolearable to N. Constraints 3—6 remain unchanged, as they are
variables in such a way th&t; N Z, =@. linear constraints in a top-level conjunction. The disfiomT
Taken two fresh boolean variablgs andys, the predicate 9 is replaced first by the following predicates:
1 = Q1(X, Z1) Nys — 2X,Z2A1+221iSEUi' ; _ : _ ;
gatisfigbl(e toP() X) yThe Cgregdicate;);l le (yX, Zy) hasqthe = (ip20Avp=0) .(10) 2o ip=0/Avn _EOHZD) o .
form y1 — (Ae i }G (X, Z1)AA, DJ(ZI)) and therefore and then by constraints 13-16 below, obtained by moving

it is not a generalized guar e constramt By Fact 1, I[]atrrows inside the conjunctions, as shown by Fact 1. Simi-

| h X, 7 arly, disjunctions 7 and 8 are eliminated by introducingrfo
'S equivalent to the pred|cat;é\ (y1 —~ Gil ) A boolean fresh variables. Summing up, disjunctions 7-9 in

Ajeyy (s — Di(22)). By applylng Fact 1 also 192 =  Eyample 1 are replaced by the conjunction of the following
Q2(X, Zs), the statement follows by taking =2, U Z, U (guarded) constraints:

W y2h GX, 2) = Nigpyyn = GQ(X,jzl) A Niepmy2 = 24— (va = Rogiu) (12) 21— (ip <

G3(X, Z3), and D(2) = Njgpyyn = Di(Z2) AMNjgg¥2 = 25 (vp = Romin) (13) za— (u=

D}(Z2) A (y1+y2>1) L] 21— (ip>0) (14) 25— (u=0
Proposition 4: Any predicateP(X) is equisatisfiable to z1— (vp=0) (15) 26— (vu=0) (19)

a predicateQ(X, Z) =G(X, Z") A D(Z), whereG and D With respect to the statement of Proposition 4, we have that

are guarded predicates afi C Z is the set of boolean Z = {z1,22,23,24,25,26}, G(X,Z’) is the conjunction of

variables that occur positively as guardsGn guarded constraints 12—19 and original constraints 3-@&, an

Proof: By Lemma 3, any predicat®(X) is equisatisfi- D(Z) is the conjunction of constraints 20-22.

able to a generalized guarded predidai¢ X, Z1)AD1(Z1).  Algorithm 2 From linear to guarded predicates
By Fact 2,D,(Z;) is equisatisfiable to a guarded predlcateInput P predicate overX

Dy(Zy, Z2). Let Gi(X, Z1) = Nigppzt = (2 = - = oyput: (G, D, 7', Z) whereG is a guarded predicate,
(zn, = Ci(X))...) N GY(X, Z5), where G} (X, Z3) is a 7' C Z set of its guard variables,

guarded predicatezt C Zl). By Fact 2G1(X, Zy) Is eq- D(Z) is a guarded predicate over Z

uisatisfiable to the guarded predicatg,,jwi — Ci(X) A function PtoG(P, X)

Nicp (Wi =2 e 75 =1 — i) NG'(X, Z3). The state- 1. (G, D, Z) +PtoGGP, X)

ment follows by takingZ’ = Z3 U {w1, ..., w.}, Z=2"U 2.G'+ 90, D+ 92,7 =92

WU Zy G(X,Z)= /\ cln ](z —>C( NAG'(X,Z"), and 3. forall ve GUD do

D(X,Z)= Nigpa#' =2 jepny 252 1-n) AND"(Z',2") m if v=21—=(..—(2,—C(W))...) then

The functionPtoG (Alg. 2) summarizes the predicate trans- w <fresh(), Z“,Z U {,w}

formations given in the proof of Prop. 4. It calls function i WIQX/then ,G «G UC{“’_’CU/V)}
PtoGG(Alg. 1) that performs predicate transformations given o € S%l,) D' U{w— (ZV)}

in the proof of Lemma 3. The functiofresh( ) returns at CD'U{w =3 ez 21—}

: . . else if vard~)C X then
each invocation a (globally) fresh variable. 10, G U{y) elseD D' U {~}

11. return (G, D', Z',Z\ Z')

2142221 (20)
zz+z4>1 (21)

0) (16)
1) (17)
) (18) zs+26>1 (22)

© o NG

Algorithm 1 From predicates to generalized guarded pred.

Input: P predicate overX . A. From Guarded to Conjunctive Predicates
Output: (G, D, Z) where(: is a general. guarded predicate, pefinjtion 3: Let P(X) be a predicate. A variablee X
Zis the set of its _(fresh) guard varlqbles, is said to beboundedn P if there exista, b€ D, such that
D(Z) is a generalized guarded predicate over Z P(X) impliesa <z <b. A predicateP is bounded if all its
function PtoGGP, X) variables are bounded. We writep(P, ;) andinf (P, z) for
1. if P is a constraintC'(X) then return (C'(X),, @) the minimum and maximum value that the variablenay
2.let P=PioP, (o€{NV}) assume in a satisfying assignment f8r When P is clear
i- églaglv?; :g;ggg?; from the context, we will write simplyup(z) andinf(z).
5 if ;’22];1 /SPQ then retur; (G1UGs, DyUDs, 71U Zs) Given a bounded pre_d|catlé(X), a real numb_en, and
6. if P— P,V P,then a vanablgx € X we write sup(qx).for asup(z) _If az=0
7. gL frest), ys < fresh), Z'< Zy U Zo U {y1, 4} and forainf(z) if a <0. We write inf(az) for ainf(z) if
I ' ' ' a >0 and forasup(z) if a<0. Given a linear expression
& DtymaheDb Vsl eDagUlue =1k 0 T o Tover a set of bounded variables, w
0. ' ={yp—=y|veC Uy —~]7eCs) ) = >.;_,a;x; over a set of bounded variables, we

N
©

retun (G, D', Z') write sup(L(X)) for "  sup(a;z;) and inf(L(X)) for
L Sorinf(az;).

Example 2:Let # be DTLHS in Ex. 1. Given the pred-  Proposition 5: Each bounded guarded predicd&€X) is
icate N that defines the transition relation &f, function  equivalent conjunctive predicatg(X).




Proof: The conjunctive predicat@(X) can be obtained if = is bounded inG(X, Z;) then it is also bounded in
from the guarded predicafe(X) by replacing each guarded G(X, Z7), and ifG(X, Z3) is unfeasible, then alsG (X, Z;)
constrainty of the shape:— (L(X) <b) in P(X) with the  is unfeasible (Prop. 7). In the following we establish the
constrainty’ = (sup(L(X)) —b)z+ L(X) <sup(L(X)). If  correctness of functiocomputeBounds
z=0 we havep=’ sincey holds trivially andy’ reduces Proposition 7:Let Z = z,...,z, and letG(X,Z) =
to L(X) <sup(L(X)) that holds by construction. lf=1 A, (z:— C;(X)) be a conjunction of guarded constraints,
both ¢ and ¢’ reduce toL(X) <b. Along the same line of where head variables occurs positively. Then:

reasoning, ify has the formz — (L(X) <b) we pick ¢’ to 1) For anyZ* €B", G(X, Z*) is equivalent to the con-
be (b—sup(L(X)))z+L(X) <b. [ junctive predicate)\ ;. ;(z.,C;j(X).
Together with Prop. 4, Prop. 5 implies that any bounded 2) If Z} < Z3, thenG(X, Z3) = G(X, Z7).
predicate can be transformed into an equisatisfiable conjun Proof: Statement 1 easily follows by observing that a
tive predicate, at the cost of adding new auxiliary boolearguarded constraint — C'(X) is trivially satisfied if z is
variables, as stated in the following proposition. assigned td and it is equivalent ta&”'(X) if z is assigned
Proposition 6: For each bounded predicaf®(X), there to 1. Statement 2 follows from the observation tha¥ b
exists an equisatisfiable conjunctive predic@eX, z). implies J(a) C J(b) and hence(X, b) has more constraints
Example 3:Let H# be the DTLHS in Examples 1 and 2. thanG(X,a). ]
We set the parameters @ as follows: Definition 4: We say that a sef' C B" is acutif for all

rr=0.1Q R=5Q Vi=15V  L=2-10"*H
re=0.1Q Rog=10" T=10"%secs C=5-10"°F
and we assume variables bounds as follows:

b e B" we haveb < C orb > C. Let D(Z) be a predicate
over a set boolean variablés=7,UZ; and let|Z3|=n. A
910" <vu <15 —4<ir<4 —1<vo<T —4<i|, <96 cutCcB" is (D, Zs)-minimal, if for _aII ceC J_D(_Zl,c) is
210" <up <0 —11<vh <17 —4<i, <4 —2<ip<d satisfiable, and for ab<C D(Z;,b) is not satisfiable.

By first decomposing equations of the shapgX)=b in To verify that a variable is bounde@(X, Z") A D(Z),
the conjunctive predicaté(X)<bA —L(X)<—band then WhereGis a guarde_d pred|_cate ywth positive guard_s in the
by applying the transformation given in the proof of Prop. 5,etZ’C Z andD(Z) is a conjunctive predicate, it suffices to
guarded constraints 14-19 are replaced by the following?heCk if it is bounded in the conjunctive predicai€X, c),
linear constraints: or all ¢ that belong to &D, Z’)-minimal cut.

2z1 —1ip S 2 (23)
4-10%z4 + vy — 10%, < 4-10* (24)
6-10%2z4 — vy 4 10%, < 6-10* (25)

vp <0 (31) Algorithm 3 Computing variable bounds in predicate
4z +ip <4 (32) Input: (G,D,X,Z' Z, x) whereG is a guarded predicate,

210%2 —vp <210 (26) zs+u<l (33) Z'C Z set of its guard variables;€ X a variable,
4 4. 4 —u<0 (34) D(Z) is a conjunctive predicate over Z
2.10422 +vp — 104ZD < 2.104 (27) 1526 + v, <15 (35) Output: (b,inf,sup), whereb € {B, —-B, —F}.
6.10"22 — vp + 10%ip < 6.10" (28) v —u< 1 (36) If b=B, G(X,Z) = inf <z < sup
21026 + vu <15 (29) w<1 @7y function computeBounds, D, X, 7', 2", x)
2:10%24 — vy < 2-10* (30) - 1. C+@, r<|Z'|, inf ¢+ 400, sup+ —oo, f<FALSE
/ H :
V. COMPUTING VARIABLE BOUNDS g Z”i%%ﬂﬂ)@:ﬁ;ﬁ;%em ZZ-DIE(ZZ)g)
In this section, we present an algorithm that checks if a , . I Feielr] Y
4 for k=7r"tor” do
variablez is bounded and that computes an over- and under-. ., trug
approximation ofsup(z) andinf(z). 6. forall beB" do
Given a guarded predicaté(X, Z), whereZ is the set of 7 it C<b th]én end  EALSE else continue
guard variables, for any valuatiofi*, G(X, Z*) is equiva- 8. if feasible D(Z, c)) then C—C U {b} else continue
lent to a conjunctive predicate (Prop. 7). A naive algorithm o if feasible{G(X7 b)) then
to find bounds for a variable for any valuationZ* solves f «TRUE ’
the MILP problemsoptimalValudz, max, G(X,Z*)) and || M « optimalValugmax, =, G(X, b))
optimalValudz, min, G(X, Z*)). If, for all Z* € B", x is 12, m « optimalValudmin ’x ,G(X ’b))
bounded inG(X,Z*) or G(X, Z*) is unfeasible, then: 13, it M =00 OF 7= o0 thén ,return’ (-B >
is bounded inG(X, Z). Vice versa, iffor someZ* € B" 14, sup < max(sup, M), inf < min(inf,,n;), -

G(X,Z*) is feasible andr is not bounded, then is not
bounded inG(X, Z). Unfortunately, this exhaustive proce-
dure requires to solvel?! MILP problems.

The functioncomputeBoundsn Alg. 3 refines such idea Proposition 8: Let Q(X,Z)=G(X,Z’) A D(Z), where
in order to save unnecessary MILP invocations. If all guardG is a guarded predicate such that guard variables'in 7
literals are positive, if an assignmeftf makes true more occur positively andD is a conjunctive predicate. L&t be
guards than an assignmefi, then the conjunctive predicate a (D, Z’)-minimal cut andx € X. If, for all c € C, z is
G(X, Z7) has more constraints th@( X, Z;) and therefore  bounded inG (X, ¢) thenz is bounded inQ(X, Z).

15. if end then break
16. if f then return (B, inf, sup) else return (=F, _, )




Proof: SinceC'is a(D, Z')-minimal cut, any satisfying D can be transformed into a conjunctive predicélé by
assignment(X*, Z*) to @ is such thatC < Z™*. As a calling the functionGtoC on D. To apply functionGtoC on
consequence, there exists C' such thate<Z*. Prop. 7.2 G(X,Z’), we need bounds for each variable Ja These
implies thatmax{z | G(X,Z*)} <max{z | G(X,c)} and  bounds are computed by calling | times the functiorcom-
min{z | G(X, Z*)} >min{z | G(X,c)}. Therefore ifx is  puteBoundsand are stored in the two arrays, M. If the
bounded inQ(X,c) for any ¢ € C, then it is bounded in function computeBound$inds thatG’ is unfeasible or some
QX,2). Bz is not bounded inG’, the empty constraint is returned

Stemming from Proposition 8, functiooomputeBounds together with the failure explanation. Otherwise, the idebi
(Alg. 3) checks if a variable: is bounded in a guarded pred- conjunctive predicate is returned.
icate by finding a minimal cut. To limit the search space, in
line 2 (resp. line 3) it is computed the minimum (resp. maxi- o ) o ) )
mum) number of 1 that a satisfying assignment to the predi- The disjunction eI|m.|nat|on procedure given in Alg. 4
cateD(Z) must have. The loop in lines 4-16 examines posJeturns a guarded predicate that may contain a large number
sible assignments to guard variable<inkeeping the invari- pf fresh auxiliary boqlean variables and this may heawly
antvb < C—feasible3 (X, b) A Vb>C max{z | G(X, Z)} < |mpacF on _the effectiveness of control software _synthe5|s
max{z | G(X,b)}Amin{z | G(X, Z*)} >min{z | G(X,b)}. O verification. On the other hand, guarded predicates are
In the loop in lines 6-14, if the assignmentinder consid- themselves a natural language to describe DTLHS behavior:
eration is greater than an assignmen€inno further inves- ~ @ssignments to guard variables play a role similar to modes
tigation are needed (by Propa8is bounded inQ(X, c)). If ~ in hybrid systems and, by using negative literals as guards,
D(Z\Z',b) is unfeasible, the assignments not relevant, We can naturally model different kinds of plant behavior
because < C, for any (D, Z')-minimal cutC. Otherwise, ~ according to different commands sent by actuators.
is a relevant assignment and it is added’tgline 8). If z is Example 5:Disjunctions 7-9 in Ex. 1 can be replaced by
unbounded irQ(X,, ¢) (lines 11 and 13) we can immediately the conjunction of the following (guarded) constraints:
conclude thatr is unbounded inQ(X, 7). Otherwise, we  ¢—vp=0 (38) u—v.=0 (40) G—vp=~Rogip (42)
update the approximations computed fof(z) andsup(x) q—ip>0 (39) g—vp<0 (41) U—v,=Rogiu (43)
(line 14). If for all assignments ik € B} we havec > C The resulting model for the buck DC-DC converter is
(B} is a cut) we are dong}' is a (D, Z’)-minimal cut, and much more succinct than the guarded model in Ex. 2 and it
inf and sup computed so far are over-approximation:of has two guard variables only, rather than six as in Ex. 2.
bounds inQ(X, Z) (line 15). Alg. 3 cannot be directly applied to guarded predicates
with both positive and negative guard literals. This obxstru
Algorithm 4 From predicates to conjunctive predicates  tijon can be easily bypassed, by observing that a guarded

VI. MODELING ISSUES

Input: P predicate ovetX constraintz — C(X) can is equisatisfiable to the guarded
Output: (b,C), b € {B, —B, =F}. predicate(z’ — C(X)) A (2’+2z =1). This transformation
If b =B, thenC ~ P may double the number of guard variables and hence make
function PtoC((P, X)) the application of Alg. 3 less effective than an exhaustive
1. (G,D,Z',7") +PtoGP, X) algorithm on the original model with positive and negative
2. D' +GtoC(D, Z' U Z",(0,1)) guard literals (see experimental results in Section VI)mS
3. forall x € X do ming up, guarded predicates turn out to be a powerful and
4. {u,mg, M,) +computeBound&s, D', X, 7', 7" | x) natural modeling language for describing DTLHS transition
5. if u #BounpeD then return (u, &) relations. We end this section by proposing a syntacticlchec
6. return (u,GtoC(G, X U Z' U Z" (m, M)) that most of the time may be used to compute variable

bounds avoiding to use the functi@emputeBounds

Example 4:In Ex. 3 we assumed bounds for each vari-  pefinition 5: A variablez is explicitly boundedn a pred-

able in the DTLHSH introduced in Example 1. Such bounds ; ; /

- . . te P(X), if P(X)=B P/(X), whereB(z)=xz <
has been obtained by fixing bounds for state variakleand |bci§>g f)orl son(1e )const(;rzté\ anélb ), where B(z) =z <
vo and for variables)p andip, and by computing bounds Pro_po’sition 9:Let H = (X,U,Y,N) be a DTLHS such

for variablesiy, v, iu, andv, using Alg. 3. that each variable € X UU UY is explicitly bounded inV,
The functionPtoCin Alg. 4 presents the overall procedure and for allz’ € X’ there are inV at least two constraints of

that transforms a bounded predicate into an equisatisfiablne formaz’ > L, (X,U,Y) andz’ < Ly(X,U,Y). Then N

conjunctive predicate. It calls functions in Algs. 1-3 andis bounded.

the function GtoC that performs predicate transformations Proof: Since all variables inX, U, andY are explic-

given in the proof of Prop. 5. As a first step, Alg. 4 translatesitly bounded inN, they are also bounded iN. Therefore

a predicateP(X) into an equisatisfiable guarded predicateinf(L;(X,U,Y")) andsup(L2(X,U,Y)) are finite. SinceV

G(X,Z"YAND(Z',Z") by calling the functionPtoG. Since is guarded, it is a conjunction of guarded constraints and fo

boolean variables are trivially bounded (bounds are vectorall 2’ € X’ it can be written asy] > L1(X,U,Y) Az} <

0=(0,...,0) and1 = (1,...,1)), the guarded predicate Ly(X,U,Y)AN'(X,U,Y, X’) for a suitable predicat&’.



This impliesinf(L;(X,U,Y)) < 2’ < sup(L2(X,U,Y)), i,

which in turn implies that’ is bounded inN. [ ] "o ol Do

Example 6:Let H, be the DTLHS ({z}, {u}, @, N1), =
whereN; (z,u, ') =(0<z <3)A(0<u<1)A(z'= 2+3u). e oty
By Proposition 9,4, is bounded withinf(z) = 0 and T _ meo
sup(z') =6. All other variables are explicitly bounded i¥. I f% T
Explicit bounds on present state and input variables do not "Vl F AD, m\ .
imply that next state variables are bounded. As an example, T +op |l ¢
let us consider the DTLH3{s = ({z}, {u}, @, N2), where
No(zyu,2’)=(0<2<3)A(0<u<1)A (2 > a2+3u). Figure 2. Multi-input Buck DC-DC converter
Since, for any value ofr and u, ' can assume arbitrary Table |
large values, we have that, is not bounded. PTOC PERFORMANCES(PREDICATES

n r 7 " k |cut CPU, CPU.

VIl. EXPERIMENTAL RESULTS

2 12 6 12 11 64 1.48e+00 1.13e+02
In this section, we evaluate the effectiveness of our predi- 3 18 9 18 17 512 8.33e+01  1.35e+04
cate transformation algorithfitoC. We implemented Alg. 4 4 24 12 24 23 4096 8.73e+03>1.38e+06
in C programming language, using GLPK to solve MILP
problems. We present the experimental results obtained by 1) Multi-Input Buck as a PredicateWe model then-
using ProC on an-inputs buck DC-DC converter, that we input buck DC-DC converter with the DTLHE; = (X1, Uy,
model with three DTLHSS{; = (X;, U;, Y;, N;), with i € [3], Y1, N1), where Xy =iy, vo, Uy = us,...,u,, andyY; =

st X1 =Xo=X3,U1=Us=U;, Y1 CY>2CY3, Niisa wp,vP,...,00 [ ip, I¥ ... I% %, ... 0% From a sim-
predicate(Section 1I-A), N, and N3 areguarded predicates ple circuit analysis (e.g., see [15]), we have that staté var
(Section IV) and guards itN3 are positive only. ables constraints are the same as Eqgs. (3) and (4) of the

We then run POC on H; for increasing values of converter in Ex. 1. Analogously, as for the algebraic con-
(which entails that the number of guards increases), inrordestraints, we have that Eqg. (9) in Ex. 1 also holds for the
to show effectiveness of 1©C. Namely, in Section VII-A1  n-inputs converter. In addition to Egs. (3), (4) and (9) of
we show experimental results for the whole algorithm inEx. 1, the Egs. (45)—(48) below must hold.

Alg. 4. Furthermore, in Section VII-A2 we show that exploit- N N .
ing knowledge of the system and modeling it with guarded Nwi=0)v (vi'=0) (44 A\(ui=1)V (v =Roxl}') (45)
predicates we obtain better results than those in SectibAYI “<"! i€ln]

u D __ u D _ u
To this aim, we suppose that predicateésD’ and variables ze[n_l(](l" Z0) A (7 =0V (I <0) A (07 = RorrI7)) (46)

setsX, 7', Z" in Alg. 4 may be directly given as an input . u =P, =%V,
to function PtoC (thus lines 1 and 2 in Alg. 4 are skipped). ZL:ZDJF;IZ' (“7) ie[/n\_lq]JD v Vihen =t (49)
Both in Section VII-Al and VII-A2 we compare the com- N, also contains the following explicit bounds4 <i; <
putation time of functionPtoC against functionPtoCexh AN -1<vo <TA—-10%<ip <103 A /\?:1_103 <Ip <
which may be obtained from Alg. 4 by replacing the call to 13 A AP, —107 < vt <107 A /\?_*01 —107 <P <107,
function computeBoundsgour bottleneck here) in line 4 with We call functionPtoC with param_eterd\fl, X, UU,UY;
the naive algorithm which exhaustively checks all possiblg, increasing values of, and we compare its computation

assignments to guard variables (see Section V). To this aiMyme with that of functionPtoCexh Table | shows our ex-
also PtoCexhhas been implemented inside®C. As for  perimental results. In Table I, column shows the number

PtoC, also for IPtoCexh it is possible to girectly SPecify  of buck inputs, column: shows the number of guards (see
predicatesy, D" and variables set&, 2*, 7. line 1 of Alg. 3), columns”’, r” have the meaning given in
. ) lines 2 and 3 of Alg. 3, colum# gives the value of at the
A. Mult I_nput Buck DC-DC Converter _ end of the for loop of Alg. 3, columirut| gives the size of
A Multi-Input Buck DC-DC converter [16] (Figure 2), cz at the end of the for loop of Alg. 3, and colun@PU,
consists ofn power supplies with voltage valué§ <...<  (resp. CPU,) shows the computation time in seconds of

Va, n switches with voltage valuesy, ..., vy and current  fynction functionPtoC (resp.PtoCexh. Table | shows that
valuesIy,..., Iy, andn input diodesDy, ..., D,_1 With  heuyristics implemented in functiocomputeBoundsgyreatly
voltage values’, ..., v, ; and current valueg), ..., i1 speeds-up variable bounds computation.

(in the following, we will also writevy, for v} andip for 2) Multi-Input Buck as a Guarded Predicatae mod-
if’). As for the converter in Ex. 1, the state variables arify the DTLHS H, of Section VII-Al by definingH, =

i, andvp, whereas action variables arg, ..., u,, thus a (Xa,Us, Ya,Na), where Xo = X1, Uy = Uy, Y = Y, U
control software for then-i'nput buck dc-dc converter has Y] =Y1 U{qo,...,qn_1} and N, is obtained fromN; by

to properly actuate the switches, . . ., u,,. Constant values replacing Eqs. (9) and (45)—(48) with Egs. (38)—-(43) (where
are the same given in Ex. 3. q = qo, see Section VI), and by adding the following ones

(i€ [n—1]):



Table Il

PTOC PERFORMANCES(GUARDED PREDICATES Finally, our experimental results show the effectiveness
- - of our algorithms. Most notably, they show that guarded
rr "k eut| CPU, CPU. predicates may turn out to be a natural language to describe

16 8 8 8 256 1.17e+01 1.24e+01 succinctly DTLHS dynamics.
20 10 10 10 1024 1.55e+02 6.93e+01 REFERENCES
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