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Abstract

In the last years, the use of controllers has become very commonniets
work is being done to create automatic controller synthesis tools. When glealin
with critical systems, most of the times such controllers are required épti@al
androbust i.e., they must achieve their goal with minimal resource consumption
and be able to handle also unexpected situations. All these requireméith, w
are intrinsically difficult to satisfy, become even more challenging whestirap
with hybrid systemswhich represent a wide range of real world systems.

In this paper we propose a model checking based tool, namely CGMurph
which assists in the the generation of optimal and robust numerical dergrfor
systems having complex dynamics, possibly hybrid systems. The tooidps
a complete controller generation solution, being also able to effectivelpess
the controllers and encode them so that they can be directly embeddeft-in so
ware/hardware systems.

The tool has been widely experimented with very promising results.  par
ticular, the present paper reports the complete experimentation redatigeréo
two academic case studies, and the preliminary achievements obtaingolyang
CGMurphi to an industrial critical system.
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1 Introduction

A control system (or, shorthcontroller) is a hardware/software component that con-
trols the behaviour of a larger system, calf@dnt. In a closed loop configuration, the
controller reads the plant state (looking atstate variablesand adjusts itgontrol
variablesin order to keep it in a particular state, callgetpoint which represents its
normalor correctbehaviour.

In the last years, the use of sophisticated controllers leasrhe very common
in robotics, critical systems and, in general, in the hardvemftwareembedded sys-
temscontained in a growing number of everyday products and appdis. In partic-
ular, much work is being done to provide methodologies ferdhatomatic (or semi—
automatic) synthesis of controllers directly from the plapecifications (see Section
1.3).

Numerical controllers are tables indexed by the plant statbose entries are com-
mands for the plant. The commands are used to set the coatiables in order to
reach the setpoint from the corresponding states.

Beyond the creation of the correct controllers, there aversé other important
tasks that have to be considered. First, most of the timesahgoller has to bepti-
mal, i.e., from any state it has to select thestcontrol path to the setpoint, with respect
to a cost function that is often the time-to-setpotithé optimality. Such optimal con-
troller generation task is obviously harder than the presvione, since optimisation
commonly requires more complex calculations and largekingrdata storage.

Moreover, a major problem of numerical controllers is thebustnessi.e., the
state read from the plant may not be in the controller taliflepagh it may becloseto
some states in the table. This commonly happens when theolentrives a physical
system that is subject to approximation and disturbances.

Finally, since controllers have often to be embedded in ksieaices, their size can
be an issue. Indeed, the size of a numerical controller cdrube, especially if it has
to be both optimal and robust. Therefore, suitable compegechniques should be
exploited, but these may impact the controller access tihad,is another important
issue.

All the issues above become even more challenging whemdgealth hybrid sys-
temsi.e., systems described by both continuous and discretpanents. This kind of
system is actually very common: for example systems witdysebr switches, motion
controllers, constrained robotic systems, flight contgatems, analog/digital circuit
design, biological applications, etc. Unfortunately, higltsystems often present a very
complex dynamics, thus the (optimal) controller generatfoharder to achieve, and
the robustness cannot be obtained using simple interpolétichniques, as happens
for continuous systems (e.g., see [30]), thus more comgiproaches must be applied
(e.g. see [38, 28)).

1.1 Motivations

Unfortunately, there are wide classes of real-world systémat are hardly tractable
with the current controller generation techniques. Inipalar,



e when the system dynamics is very complex and does not sdlisfizipschitz
condition ([1, 14]), like it is common for hybrid systemse(i. systems described
by both continuous and discrete variables), the contrddlpra cannot be solved
using analytical methods like [30, 18].

e if the system dynamics is nonlinear, the control problermcame solved by a
dynamic programming approach ([10, 6]), since it requirésekward decom-
position of the cost function.

o finally, local heuristics (e.g., fuzzy rules) perform pgdri in nonlinear or hybrid
systems, since the presence of discontinuities may makedauwal often action
not suitable for the final goal.

Therefore, for nonlinear and/or hybrid systems, even tmh&gis of a good nu-
merical controller (not to say an optimal or a robust onejrsetd be computationally
difficult. To the best of our knowledge, there is no automtta available that is able
to generate optimal and robust controllers for such systéfaseover, all the current
controller generation techniques rarely address the issaentroller size and access
time, leaving this problem to the software and hardware rfzaturers.

1.2 Contribution

In this paper we propose an automatic model checking basdidonwogy for the
generation of optimal and robust numerical controllersspstems having complex
dynamics, possibly nonlinear and hybrid systems. In paeic we focus on plants
whose state is fully observable, i.e., all the variablescihiiefine the plant state can be
read by the controller at any time. However, this is not a bigtation, since it allows
us to model realistic systems such as the ones presentegldask studies (Section 7).

Symbolic (i.e., OBDD based) model checking techniques lean already suc-
cessfully applied to generate controllers for a wide cldsystems. However, they do
not perform well when applied to hybrid systems, which ulsuzdve a very large state
space. Thus, our idea is to useplicitmodel checking techniques to performeacha-
bility analysis which allows to compute the exact reachable region of tstegy state
space, i.e., all the states reachable from the initial dmegigh some action sequence.
This region has usually a complex structure, thus is noiairio define without auto-
matic support. However, since the reachable region is afbemposed only of a small
fraction of the possible states specified by the system gtatables, it allows to build
a representation of the system dynamics which focuses onlyeoactual behaviour of
the system, which can be easily analysed to generate theottent

Moreover, we also perform probabilistic analysis of the plant state space in or-
der to effectively apply atrengthening algorithmvhich extends the initial controller
making it robust, that is able to cope with disturbances.

Finally, as a further contribution, we present an effectieatroller compression
technique, namely an OBDD-based controller encoding, kvhitows to reduce the
size of a numerical controller table up to 10% of its origisale, while preserving
small access times.



1.3 Related Works

A survey of methods for synthesising controllers is out a@isefor this paper, we refer
the interested reader to the following books: [4] for PIBséa techniques, [32] for
what concerns the synthesis of robust controllers and [@2jfathematical methods
and in particular Lyapunov-based methods. Finally, therebhandbook [31].

Furthermore, here we want to mention some approaches simitars.

First, one of the most versatile and widely used techniqdgrnsmic programming
which is very suitable for the generation of optimal corex [6, 30]. In [18], we pre-
sented a comparison between model checking and dynamicapnaging techniques
for the synthesis of optimal controllers. However, diffethg from our approach that
provides an automatic methodology, the dynamic programgrmoften requires the def-
inition of design functions which have to be chosen case bg.ciloreover, it requires
the inversion of the dynamical behaviour of the system whinbe hard to compute.

Cell mappingoriginated by Hsu[26, 24] as a computational techniquaffi@alysing
the global behaviour of nonlinear systems, has been usezh&rgte control tables (see
e.g. [25]). However, since cell mapping requires a globalysis of the system, when
a high precision is required, it is hard to apply.

A widely used approach is the one based symbolic model checking, (see,
e.g. [46], the Pnueli's works [3, 2] or the UPPAAL-TIGA tod,[47]), which how-
ever differs from ours since we use an explicit approach.

Furthermore, the problem of synthesis of controllers cavidged as a two-players
game between the controller and its environment. For thisageh, see, e.g. [39, 34,
44], where, however, authors consider timed automata [29].

Finally, there is a class of “on the fly” algorithms (see, ¢4h] or the CIRCA
project [35, 21])

However, to the best of our knowledge, this is the first timat #xplicit model
checking techniques are successfully applied for the aatioraynthesis of controllers
for hybrid systems.

1.4 Summary

The rest of the paper is organised as follows. In Section 2revéigle some background
notions on hybrid systems and define the correspondingalqgrtsblem. Then, in Sec-

tion 3 we present out controller generation tool, namely G@Mi, whose algorithms

are detailed in Sections 4,5 and 6. A number of validating saisdies are described in
Section 7. Finally, Section 8 concludes the paper.

2 Basic Definitions and Statement of the Problem

In this Section we give some formal definitions required tdemstand the controller
generation algorithm. The interested reader can refer,te.[83, 43] for further infor-
mation on the theoretical arguments introduced in this@ect



2.1 Discrete Time Hybrid Systems

Roughly speaking, hybrid systems are ensembles of integadiscrete and continuous
systems. The discrete system operates on a discrete sthpedarms discontinuous
state changes at discrete time points, while the continagsi®m operates on a con-
tinuous state which evolves continuously.

More formally, we have the following definition.

Definition 1 A Discrete Time Hybrid SystefDTHS) is a tuple = (X,Q, U, W, I,
f, p) where:

o X = xI,las, b;], with [a;, b;] a bounded interval of the real8.

o Q= x%_[c;, d;], with [¢;, d;] afinite subset of the intege¥s

U= x, o, Bi], with [, 5;] @ bounded interval of the real®.
o W = xI_,[vi, ui), with [y;, ;] a finite subset of the intege¥s

e [isasubsetoX x Q.

fis a function fromX x Q x U x W to X s.t. foreachg € Q, w € W,
Azu [f(z,q,u,w)] is a continuous function dfr, u) (where) is the abstraction
operator).

e pisafunction fromX x Q x U x W to Q.

The state space 6{ is S = X x Q. A statefor H is a pairs = (z, ¢) in S, where
r € X andqg € Q.

A run for the DTHS# is a (possibly infinite) sequence of states and actions
(2(0),¢(0),u(0),w(0)), ...(x(t), q(t), u(t), w(t)), ...s.t. for allt we have:

* (2(0),9(0)) € I
o z(t+1) = f(x(t), q(t), u(t), w(t))
o q(t+1) = p(a(t),qt), u(t), w(t))

If 7= (2(0), ¢(0), u(0),w(0)), (x(1),q(1),u(1),w(1)),...isarun of{ we denote
with 7(t) thet-th state element of. Thatisw(t) = («(¢), ¢(t)). Furthermore we write
e(x(t), q(t), u(t), w(t)) for (f(x(t), q(t), u(t)), p(x(t), q(t), w(t))).

A states € X x @ is said to baeachableiff there exist a pathr and an integet
s.t.s = m(t).

To convey to reader the motivations behind our formalismpvede the following
observations.

First we observe that € X is the vector of theontinuous components of the state
q € Q is the vector of thaliscrete components of the statec U is the vector of the
continuous components of the control acticasdw € W is the vector of theliscrete
components of the control actiankis the set ofnitial states



Moreover, to each discrete stateis assigned, via the functiofy a regionX; in
the continuous state spac¥ and a dynamics which acts on the regi&n when the
discrete state ig;. Roughly speaking, to every discrete state corresponasdeof the
system.

2.2 Control Problem for DTHS

In order to model our control problem, we extend the definitidd DTHS assuming
that asetpointG C X x Q # () has been specified. In this context, setpoint refers
to the normal condition the controller should bring (or ntain) the plant to. We call
goal stateqor goalg the states irt.

Moreover, we can tolerate a givapproximationin reaching the goal, more pre-
cisely givene > 0, we say that a state:(g) is ane-approximation of the goaff for
some goal stater(, ¢ ), |z — 4| < € andg = g,.

Now we are in position to state tlwntrol problemfor a given hybrid systeri{
with respect to a setpoidt and anc-approximation of the goal.

Definition 2 A Control Problem(CP) is a triple ({, G, €) where: H = (X, @, U,
W, 1, f, p)is a DTHS,G is a setpoint and is the tolerated goal approximation. A
solutionto a CP isa majfC from X x Q toU x W s.t. for all (x, ¢q) € I there exist
ke Nandarunr of # s.t.: forallt < k, n(t + 1) = o(w(t), K(7(t))), andn (k) is
an e-approximation of a goal state iy

Note that the definition 2 handles the problem of driving aeysto the setpoint
G, while it does not explicitly address the problem of keepiing system irnG (sta-
bilisation), which is very common in the control theory. However, diahtion can be
addressed as well by extending the set of initial stat@gh all the states in the neigh-
bourhood ofG (i.e., all the possible-approximations of~). Indeed, in this case the
problem solution, devised as described above, will alstaiothe information needed
to bring back (and keep) the plant to its setpoint when it rsavithin the region de-
fined bye around the setpoint itself.

Since we have no restrictions on the dynamics of the systeproblem of deter-
mining if a state is controllable to the setpoint has no atgoric solution, even for very
simple (non linear) dynamics [42]. Therefore, we must cdeissuitable restrictions,
which however should not compromise the usefulness of theoagh.

First of all, we assumeffectivenessf all functions. That is, we assume that (the
characteristic function of the set of) initial states, thEHS transition relation (i.ef
andp in Definition 1) as well as any other function can be computé&l any degree of
accuracy. Note that, while we need this requirement (whichesponds, e.g., to type-2
computability in [48]) to solve the DTHS control problem iemgral, it seems likely
that in every specific instance of the problem only a finitecjgien should be required.
Further requirements on the computability of the transifienctions are pointed out
below.

Therefore we only consideffectiveDTHS, i.e. DTHS that satisfy the above ef-
fectiveness condition.



Second, we assumdiaite temporal horizonThat is we require that the setpoint is
reached within a givemaximum number of control actionsote that in most practical
applications we always have a maximum time allowed to cotaplee execution of
system run. Thus this restriction, although theoreticglijte relevant, has a limited
practical impact. Note that with this restrictionecewise linear dynamidsecomes
decidable [41, 40].

We consider the following control problem.

Definition 3 A Finite Horizon Control ProblenFHCP) is a quadruple®, G, ¢, T)
where:

e H=(X,Q,U,W,I, f,p)is an effective DTHS,
e G C X x Gisasetof goal states,

e ¢ > (s the tolerated goal approximation,

e T € Nis atemporal horizon.

A solutionto a FHCP is a mapC from X x Q to U x W s.t. for all (z, ¢) € I there
existk < T'and arunw of H s.t.: forallt < k, n(t + 1) = p(n(t), K(x(t))), and
7(k) is ane-approximation of a goal state i¥'.

In the following, we will writelC,,(s) to mean a pathr starting ats (i.e. 7(0) = s)
and s.t. there existe < T's.t. forallt < k, n(t + 1) = p(n(t), K(7(t))), andw(k)
is ane-approximation of a goal state i&@. Moreover, we writg/C,(s)| to mean the:
above, i.e. the number of steps required to drve (an e-approximation of) a goal
state.

A more general control problem is obtained whetoat functioris defined on the
transitions of the system.

Definition 4 An Optimal Finite Horizon Control ProblefOFHCP) is a 5-tuple #,
G, e, T, C)where:

e H=(X,Q,U,W,I, f,p), G, eandT are the same as in Def. 3

e C: X xQ@QxUxW — Rt isacost function s.t. foreachy € Q, w € W,
Azu [C(x,q,u, w)] is a continuous function dfc, u).

A solutionto an OFHCP is a solutiotC for the FHCPP = (H, G, ¢, T, C) s.t., for
all other solutionsK’ for P, the following holds. For alk € I, considerr’ = K/ (s)

and = K, (s), then™ 61~ C(n (1), w(t + 1)) < 15 O (1), 7 (¢ + 1)),

2.3 Discretisation of DTHS

In order to address the control problem using model chedidogniques, we need to
extract from the DTHS a Finite State System (FSS) througlitalda discretisation of
the continuous variables.



Definition 5 LetH =(X,Q,U, W, I, f,p) be aDTHS and € R be adiscretisation
step Then adiscretisationD = (D, D.) with stepd of H is a pair of functions
Ds: X —=>Z"nXandD,:U — Z™ NU whereZ = {dz|z € Z}. FunctionD; is
defined ad;(z) = ys.t.y € Z"NX and|z — y|is minimal. FunctionD.. is defined
asD.(u) =ystye Z™NUandlu — y|is minimal.

Moreover, ifé is the smallest real value such that for all [z — D,(z)| < 4§, we
call 6 theradiusof the discretisatiorD,.

Observe that, being’ bounded, the discretised statesXinare finite (by an abuse
of language we denote also ly, this set). The same holds for the values of the
discretised control actions (correspondingly, we dengtéb this set). We use also
the notationt (%) to denote elements db, (resp.D..).

Given a discretisatioD = (D, D.) and an approximation, the discretisede-
approximations of the goal stafshortly, e-goalg are all thee-approximations of the
goal states, whose continuous components are;inWe shall always require that the
discretisation has been chosen in such a way that the sestonétised-approximations
of the goal state isot emptyi.e. the discretisation radius is less than or equal to

The discretisation step, the temporal horizon and the gigecof the approximation
of the goal states are threkesign parameterthat the designer can choose to get the
solution to the OFHCP which is best suited w.r.t. the coirstsdo be fulfilled.

Now we are in position to associate to our hybrid systém (X, Q, U, W, I, f,

p) a suitabldinite state systeras follows:

Definition 6 Given a discretisatioD = (D,, D.) and a DTHSH = (X,Q, U, W, I,
f, p), thefinite state systen(FSS in the following)F;, = (S, A, Fr, Is) associated
with A is defined as follows (with = D;(z), 4 = D.(u)):

1. the sefS of states ofFy, is defined as the set of dlt, ¢) with & € D, andq € Q;

2. the setA of actions ofFy is defined as the set of alii, w) with @ € D, and
we W,

3. the transition functioF’r : S x A — S'is defined as followsF'r (&, q, 4, w) =
(',4"), where:

o ' = f(&,q,10,w),
e ¢ =p(Z,q,0,w),
4. the setls of the initial states ofFy, is defined ads = {(, ¢)|(x,q) € I}.

We can now reformulate the control problem above as a prob&ative to the
finite state systenfy,:

Definition 7 An Optimal Finite Horizon Finite State Control Probld@FHFSCP) is
a 5-tuple Fy, G, ¢, T, C) where:

o Fy = (S, A, Fr,Ig)isthe FSS associated with the DTHSas defined in Def. 6



e candT are the same as in Def. 3
e (G C Sis aset of goal states

e C':S5 x A— Rt isacostfunction

A solutionto an OFHFSCP is the minimum-cost one (w.r.t. the cost fonedl, as
shown in Def. 4) among all the possible mdpdrom S to A s.t. for all (z, q) € Is
there existt < T'and arunm of Fy; s.t.: forallt < k, n(t+ 1) = Fr(n(t), K(xw(t))),
andr (k) is ane-approximation of a goal state .

In the following sections, we present a general methodotogplve this problem.
As we will see, our algorithm brings into (an epsilon appnoation of) a goal state not
only each initial state, but also all the states which areWwacd reachable from the
goal in at mosf” steps.

3 The CGMurphi Tool

The CGMurphi tool [13] is an extended version of the CMurpliidal checker [12].
It is based on an explicit enumeration of the state spacginatly developed to verify
protocol-like systems.

User-Supplied CGMurphi Generated
Artifacts Tasks Artifacts

Plant
Specification

Plant
Description | OPTIMAL CONTROL | Optimal Controller
(Model) -

N ROBUSTTCONTROL || Robust Controller
(optional)

M Controller C Library

COMPILE_CONTROL

(optional) Controller VHDL

v

Figure 1: CGMurphi usage pattern.

We added to CMurphi a set of new functionalities that takeaathge from the
verifier's base algorithms and data structures, extendiagemhancing them in order
to create a compleferess-buttorcontroller generation framework.

In particular, an overall view on the CGMurphi functions @rdduced artifacts is
shown in Figure 1. As the reader can see, the only input reduiy CGMurphi is a
plant description (including the setpoint) derived fromdpecifications. Then, the tool
is able to automatically



e Synthesise an optimal numerical controller for the giveranpl (the
OPTI MAL_CONTROL task of Figure 1). The output of this task is a binary en-
coded state-action table.

e Optionally, strengthen the numerical controller by refgnihe control in selected
areas of the plant state space (R@BUST_CONTROL task of Figure 1). The
output of this task is new, possibly larger, state-actitwetaThe state space areas
that are subject to the strengthening are automaticallgeindy a probabilistic
analysis process based on a set of user defined parameters.

e Optionally, compile the controller table into a compact dBbased representa-
tion and then outputs executable code that implementsapigesentation, for an
easy and quick embedding of the controller in any hardwasofiware device
(the COVPI LE_CONTROL task of Figure 1).

The process is entirely automatic, and required no usdrdugdssistance after the
model has been created and fed to the tool together with thteatier generation set-
tings and preferences.

In the following, we first describe the CGMurphi input langeaThen, we give de-
tails about the algorithms used to implement all of the thas&s listed above, namely,
OPTI MAL_CONTROL, ROBUST_CONTROL andCOVPI LE_CONTROL. A final worked
example will then show, step by step, the tool usage from tigeuser point of view.

3.1 CGMurphi Input Language

The CGMurphi input consists of the definition of&'S Fp, representing the plam
to be controlled, and including the definition of the set ates$ in the setpoint, i.e. the
states that the controller should bring (or maintain) ttenpto. Definitions are stored
in a file that we calCGMurphi model

The plant model is described in CGMurphi using tB&Murphi modelling lan-
guage which is basically the same as is a high-level programmangliage for finite-
state asynchronous concurrent systems, which includey features found in com-
mon high-level programming languages such as Pascal orc@,asihas user-defined
data types, procedures and parametrisation of description

A CGMurphi model consists of

e a set of declarations of constants, types, global variasésprocedures,
e a collection of transitions rules,
e adescription of the initial states,

e a set of properties.

The behavioural part of the model is a collection of trapsitiules. Each transition
rule is a guarded command consisting of a condition (i.e.p@dan expression on
global variables) and an action (i.e., a statement that aadifgnthe global variables
values).

Moreover, the CMurphi modelling language offers two impattfunctionalities
that are essential to cope with complex and hybrid systems:

10



e Finite Precision Real Numbers The typer eal (m n) can be used to repre-
sent real numbers with: digits for the mantissa and = log1o|n| + 1 digits
for the exponent. The typeeal (m n) is actually finite, with a cardinality of
2x9x10m 1 x 2 x 10" = 36 x 10"~ Thus this extension has no im-
pact on synthesis algorithms, but makes it easier to modeldgystems within
CGMurphi.

e External C/C++ Functions. It is possible to call externally defined C/C++
functions in the modelling language. Therefore we can useCiC++ code to
model the plant dynamics: this makes possible, for instatocdirectly include
(with some arrangement) in the CGMurphi model a simulatotife plant under
analysis, since plant simulators are often available ambst always written in
C/C++. In this way, creating the CGMurphi model for a plantdmes a really
simple process.

Finally, in order to define the setpoint, in CGMurphi we exted the modelling
language above with theet poi nt construct. Such construct has the following syn-
tax:

<setpoint- ::= set poi nt [ <string>] <expr>

where<expr> is a boolean expression that is true in a staifeand only if s satisfies
the setpoint property, optionally named witkcatring>.

Section 7 contains more examples that show how the CGMunghitilanguage
can be used to model real systems.

4 Optimal Controller Generation

In this Section we present a model checking based algorithed by CGMurphi for
the synthesis of optimal numerical controllers.

In particular, we will take advantage from treachability analysislgorithms used
by explicit model checkers, and adapt them in order to effitjecompute the con-
troller table. Indeed, model checking starts by computheyéxactreachable region
of the system by means of the so called reachability analygish region consists of
all states reachable from tlirgtial statesby some action sequence, and it has usually
a complex structure, being composed only by a small fraaiothe possible states
specified by the state variables.

Reachability analysis can be performed ibackwardor in forward way, starting
from the goals or from the initial states, respectively. Weyat abreadth-firstforward
search algorithm, since this approach is viable also whemymamics of the system
is difficult to invert, as often happens with hybrid systems.

The overall optimal controller generation algorithm is negented by the
OPTI MAL_CONTRCL procedure depicted in Figure 2.

In particular, aniterative approachis used to find the best suited discreti-
sation of the given DTHSH: we start with a tentative discretisation cho-
sen as a very coarse quantisation of the variable domain. n,THenction

11



OPTIMAL CONTROL .

4

guess_next

| discretization
/
Discretization

parameters
\

Plant
Description

\ EXPLORE
/~

System dynamics
(transition graph)

\\

4 SYNTHESIZE
/
/

Controller

AN
.

‘Acceptable « Al VALIDATE

ontrollability 2
Optimal Controller

Figure 2: Structure of the OPTIMAICONTROL Procedure.

guess_next _di screti sati on is iteratively used to generate finer discretisation
for the continuous variables by increasingly refining tlgiantisation.

The devised discretisatio® and the corresponding OFHCP definitioh are
passed to thEXPLORE procedure, which builds the dynamics of the system, and then
the SYNTHESI SE procedure is called to create the contro(ldiRL.

Both procedures work on the DTHS definition using the full hiae precision for
the calculations involving continuous values: the digsegion is only applied to the
reachable states. Moreover, the presented algorithm vetiréstly on an implicit de-
scription of the given DTHS, i.e., it does not require a cozigdtate space generation
but generates on-the-fly only the reachable states, sawithgnbemory and time.

Finally, theVALI DATE procedure is used to check@TRL guarantees a suitable
controllability. This is accomplished by checking that thiscretised trajectories are a
satisfactory approximation of the real ones. A similardtee approach is advocated
in the well-knowncell mappingapproach [38, 37]. If the validation fails, the whole
process is repeated with a finer discretisation. re obtaii#dfiner discretisations.

In the following sections we describe thEXPLORE, SYNTHESI SE and
VALI| DATE procedures in more detail.

4.1 TheEXPLORE Procedure

The EXPLORE procedure in Fig. 3 is directly derived from a forward redality anal-
ysis algorithm. It visits the DTH3{ up to 1" steps, building a representation of the
system dynamics.

More in detail, the procedure uses the following data stmas.
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1 EXPLORE(OFHCP F, discretisation D) {
2 let F=(H, G, ¢ T, O);
3 let H=(X, Q U W, I, f p);
4 states_current_level := 0;
5 foreach se I {
6 (zs,q9s) := D(s); //discretize the state
7 Enqueue(QS, (zs,qs));
8 Insert (HT, (zs,9s));
9 states_current_level := states_current_|level + 1;
10  if ((zs,qs) is an e-goal) {
11 Enqueue(QG (vs,4.));
12 HT[ (zs,qs)] . cost := 0;
}

15 current_BFS_| evel 1;
16 states_next_level := 0;
17 let Fy =(S,A,Fr,Is) be defined as in Def. 6;
18 while ((QS # 0) A (current_BF_level < T)) {
19 (z,q) : = Dequeue(Q.S);

20 foreach (y,r) € {Fr(z,q,u,w) | (u,w) € A} {

21 it ((y,r) ¢ HN) {

22 Insert (HT, (y,7));

23 if ((y,r) is an e-goal) {

24 Enqueue(Q.G (y,7));

25 HT[ (y,7)] . cost := O;

26

27 el se {

28 Enqueue(Q_S, (y,7));

29 states_next_level := states_next_|level + 1;
30 }

31 }

gg PT[ (y,m)] = PT[(y,m)] U (=, q);

34 //BFS level calculation

35 states_current_level := states_current_level - 1;
36 if (states_current_level = 0) {

37 states_current_| evel := states_next_|evel;

38 states_next_level := 0;

39 current_BFS_ | evel := current_BFS_level + 1;
40}

41

42 3}

Figure 3: The EXPLORE Procedure.
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e A Hash TableHT used in order to store already visited states;
e A QueueQ S containing the states to be expanded;

e A Predecessors Tabl®T containing, for each visited state, a list of its directed
predecessors;

o A QueueQGwhere we put the-goal states encountered during the visit;

EXPLORE takes as input an OFHCP = (H, G, ¢, T, C) and a discretisatio®,
and fills the structuresiT, PT and Q.G with the reached states, discretised through
D. To this aim, it performs a BF visit of the DTHS state spacartstg from all the
(discretised) initial states.

Namely, the initial states are inserted in the quéu® (line 7) after being discre-
tised throughD (line 6). As usual in the BF strategy, we expand the discritee s
(z, q) in the front of the queue by computing (line 20) the set of tecessor states of
(z,q),i.e.{Fr(x,q,u,w)|(u,w) € A}. Note that this is performed on the continuous
dynamics function of the DTHS, exploiting the full machinegsion.

Each successay, r) of (z, ¢) that has not been already visited (i.e., is notin,
is inserted irHT (line 22).

If (y,r) is ae-goal state, it is also inserted @G, with cost set to zero. (line 24.
Otherwise, it is inserted in the BFS queQss .

Finally, (x, q) is added to the predecessor list(gf ) in table PT. In this way,
for all (x,q) € S which are reachable from a discretisation of an initial OF-&Iate
(i.e. from a(xs,qs) s.t. 3s € I D(s) = (ws,qs)), PT[ (z,¢)] contains all the states
which may go in(z,q) by means of an action, i.ey,r) €PT[ (x,q)] iff (y,r) =
Fr(z,q,u,w) for some(u, w) € A.

4.2 TheSYNTHESI SE Procedure

The SYNTHESI SE procedure in Fig. 4 makes a BF visit of the inverted graphltiesu
from the FSSF3. To this end SYNTHESI SE uses the information iQ.G, HT andPT
prepared bYEXPLORE. Namely, we start from the-goal states ilQ Gand we navigate
each edge backward via the taBl€.

The procedure takes as input the DTS a discretisatiorD and acost function
C:SxA— R (whereS and A are the discretisation b of states and actions,
see Def. 6), and returns as output tremtroller tableCTRL, containing (state,action)
pairs.

Of course, if onlytime optimalityis required, then we simply fiK' = 1, giving a
unitary cost for all transitions of the system, so that the problerfinafing an optimal
controller reduces to select the shortest paths betweénstate and the goal state.

The BF visit queud S is initialised with thee-goal states ifQ.G. Then, in the
generic iteration we first extract a stdte ¢) from Q.S and, for all predecessof(s, r)
of (x, q) (line 9) we perform the following steps.

First, we pick d ocal _acti on among the control actiong, w) € A such that
Fr(y,r,u,w) = (x,q) andC(y, r, u, w) is minimum (lines 10-12).
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1 SYNTHESI SE(DTHS H, discretisation D, cost_function C) {
2 let H=(X, Q U W, I, f, p);

3 let Fy =(S,A,Fr,Is) be defined as in Def. 6;

4 CTRL := (;

5 QS :=QG //this erases the previous content of Q

6 while (QS # 0) {

7 (z,q) : = Dequeue(Q.S);

8

9

previous_cost := HT[(z,q)].cost; //0 if HI[(xz,q)].state is a goal
foreach (y,r) € PT[ (z,q)] {
10 | ocal cost := C(y, r,u, w);

min
(uw,w)€A | Fp(y,ru,w)=(x,q)
11 U:= {(u,w) € A| Fr(y,r,u,w) = (z,q) AN C(y, r,u, w) =l ocal _cost };

12 | ocal _action := pick an action in U;

13 if (CTRL[ (y,r)] = OVHT[ (y,r)].cost > previous_cost + |ocal_cost){
14 CTRL[ (y,7)] := local _action;

15 HT[ (y,r)] . cost := previous_cost + |ocal _cost;

16 Enqueue_in_Order(Q.S, (y,7));

17} 1}

18 return CTRL;

19 }

Figure 4: The SYNTHESISE Procedure.

Then, if either the control action fo(y,r) has not been defined yet, or
| ocal _acti on leads to better results than the already computed one (e 1
CTRL[ (y,r)] andHT[ (y,r)] . cost are properly updated (lines 14 and 15, resp.),
and(y,r) is enqueued ifQ.S in ascending order w.r.t. coét to be later expanded.
This phase ends when the quel& is empty, and the final controller tab&'RL is
returned.

Note that theSYNTHESI SE procedure is the same as Dijkstra algorithm except
that the nodes are not enqueuediis before the main loop. Namely, nodes (states)
with infinite cost are not enqueued since as soon as a(gtatgis found to have a finite
cost,(y, ) is enqueued iR S. Since, in the Dijkstra algorithm, if the queue is left with
states with infinite costs only, no further modificationsetgitace in the shortest path
tree, the algorithm in Figure 4 is indeed the same of Dijsatgmrithm. This implies
the optimality of the returned controller.

4.3 TheVALI DATE Procedure

Finally, the VALI DATE procedure, shown in Fig. 5, is used to check if the chosen
discretisation has generated a controller that fits the desined tolerance.
In particular, we measure such tolerance by means of tworitapoparameters:

e thetrajectory contro] i.e., the percentage of states belonging torda trajec-
tories (generated using the full machine precision) thatcantrolled to the set-
point by thepseudo-trajectorieggenerated using the given discretisation). This
parameter is used to estimate twntrol errorsintroduced by the discretisation.

e thetrajectory delayi.e., the ratio between the length of the pseudo-trajegor
and the one of the corresponding real trajectories. Thiarpater is used to
estimate hovslowerare the pseudo-trajectories due to their approximation.
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1 int LengthPseudoTraj(table CTRL,state (z1,q1), int max_steps, double &)
2 {

3 steps :=1;

4 while (steps < max_steps) {

5 (u,w) := find_action((£1,q1), CTRL);

6 (Z2,q2) := Fr(&1,q1,u,w); //using discretisation

7 if ((@2,92) is a e-goal)

8 return steps;

9 st eps++;

10 (@1,q1) 1= (82,92

11

12 return -1;

13

14 int LengthReal Traj (table CTRL,state (z1,q1), int nmax_steps, double ¢)
15 {

16 steps := 1;

17 while (steps < nax_steps) {

18 (u,w) 1= find_action((Z1,q1), CTRL);

19 (z2,q2) := (f(z1,q1,u,w),p(x1,q1,u,w)); [/full precision
20 if ((w2,q2) is a e-goal)

21 return steps;

22 steps++;

23 }(Il,(h) 1= (@2, q2);

25 return -1;

}
27 bool VALI DATE(table CTRL,int T, double g int tdelay, double tcontrol)
28 {
29 foreach state (z,q) €CTRL {
30 t1 := LengthPseudoTraj((z,q), T, ¢€);
31 if (t1 > -1) {
32 t2 := LengthReal Traj ((z,q), t1 + tlxtdel ay, €);

33 if (t2 > -1)

34 controllable := controllable + 1;

35 el se

36 real _out := real _out + 1;

37 } else pseudo_out := pseudo_out + 1;

38

39 return ((controllable/(controllable+real _out+
40 pseudo_out))>=tcontrol);

41}

Figure 5: The VALIDATE Procedure.
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The VALI DATE procedure takes as input a controller taBlERL, the design pa-
rameterd” (horizon) andt (goal approximation), the required trajectory delaie(ay)
and control {control), and returns true if the latter two parameters are satisfied

For each state ilCTRL , VALI DATE determines if the state is controlled both
by the real and discretised trajectories, and the correipgriengths. These values
are aggregated and finally compared with the user-definecaimtes to determine the
return value of the function.

5 Robust Controller Generation

The controllerCTRL generated by th@PTI MAL_CONTROL algorithm in Section 4 is
aroptimal controller, but may not bebust

Given a set of range of disturbancés= {4y, ..., d,} on state variables and con-
trol variables (commonly due to sensor noise and approximaif continuous vari-
ables), we say that a controller is robust if it is able to cajib A-disturbed trajecto-
ries, which may lead to unknown states, althoalgiseto some states in the table.

Since this is an always desirable feature, in many cases gtimal controller
should be refined to make it robust. Obviously, it is impodsstb correctly handle
every possible disturbance, thus even a robust controliée actually unable to
control the plant in some cases. In particular, in this pagewill apply a statistical
method to select a set of interesting plant states, in ocdeonicentrate the refinement
processaroundthem.

ROBUST_CONTROL

Safey threshold

Increase safety threshold PROERBILIZINC
ANALYSIS

Critical states
\
AN

N
A STENGHTEN

/
Slrengmened
Controller

‘Acceptable

robusiness? >t “|ROBUSTNESS_CHECK

Robust Controller

Figure 6: Structure of the ROBUSTONTROL Procedure.

The overall robust controller generation algorithm is esented by the
ROBUST _CONTROL procedure depicted in Figure 6.

The idea is tastrengtherthe controller by adding new states in order to increase its
robustness degree. However, since the strengthening wegldre a huge amount of

17



time and memory to be performed, we do not apply this proetiuall the states of
the controller. Indeed, we first apply a probabilistic as&yn order to select the most
important system states. In this way, the controller stiteggng is performed only on
these states, ensuring a high degree of robustness withatavegl small growth of the
controller table.

Finally, to check the actual controller robustness, GHECK_ROBUSTNESS pro-
cedure is applied to the final controller. If the robustnesgree is not satisfying, we
repeat theSTRENGTHENI NG algorithm on a larger set of states, obtained from a call
to PROBABI LI STI C ANALYSI S with stricter parameters.

In the following sections we describe boBROBABI LI STI CANALYSI S and
STRENGTHENI NG procedures in more detail.

5.1 ThePROBABI LI STI C ANALYSI S Procedure

In this phase, we want to select theost significant statesf the plant under analy-
sis, in order to focus the strengthening only on these stdteleed, some states are
rarely reachable by the plant, or may represent "no way datés, where any kind of
recovery fails, and thus it is useless to strengthen thesesst

Therefore, the selection process is performed usipgphabilistic analysisalgo-
rithm described in the following.

For each controlled state(i.e., in CTRL), we first calculate the probability.(s)
that froms, after any sequence of allowed actions, we are still in & stithe controller.
This gives us a measure of how much the states deriving froam be handled by our
controller.

In particular, since we actually cannot take into account@ossible sequence of
actions, weapproximateour algorithm by considering only sequence®f a given
length%.. Note that the choice df. depends on the required degree of accuracy. In
the following, we supposk. to be fixed.

The selected sequences form a tfésoted ons. For a given sequeneein 7, we
define|o| as the minimum value (if it exists) of with 1 < i < k., such that the action
o (1) leads to a state in the controller. We ledwgundefined otherwise.

Now let 7* be the set of all sequencesuch thato| is defined. The value ¢f.(s)
is computed by the following equation:

pa(s) = { Yoer Tajer T is not empty o
0 otherwise.

where| A| is the number of actions in the FSS (see Definition 6).

We say that a state is deadif p.(s) < M., where thesafety thresholdV/. is
a small value, say below 10%. Otherwiseis live. Live states represent the normal
states of the plant, wheredsadstates correspond &xtremestates, that are practically
uncontrollable in case of disturbances.

Therefore, our idea is to identify the setlofe statesS = {s | p.(s) > M.} and
concentrate the strengthening process on them.

Figure 7 shows thé®ROBABI LI STI C_ANALYSYS algorithm. The probability
pe(s) is calculatedncrementallyusing again a breadth-first visit starting froamThis
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PROBABI LI STI C_ANALYSI S(control l er table CTRL,int k., double M.)

1

2

3 foreach s € CTRL {

4 queue Q : = s;

5 pe(s) = 0;

6 while ((Q#0) & (BF_-Level < k.)) {
7 s = Dequeue(Q;

8 foreach ¢t € Fr(s) {

9 if (te CTRL) pc(s):pc(s)JrnBR%;
10 /In is the nunmber of actions

11 el se Enqueue(Q t);

12 b}

13 if (pe(s) < M:) s is dead,

14 el se s is live;

15 } 1}

Figure 7: The PROBABILISTICANALYSIS Procedure.

time the exploration of each path is stopped aftelevels or when a state of the con-
troller is reached. Indeed, from Equation (1) we know thatrgmaining paths do not
contribute to the increment @f.(s). The exploration also stops @mror states(that

are clearlyunrecoverabl® which may or may not exist according to the system under
consideration.

Sy is a live state Sy is a dead state

Figure 8: Examples of probability computation.

Two examples of this computation are shown in Figure 8, wisetig circles are
the states iIrlCTRL, dashed circles are the states noCiFRL, barred circles are error
states and, for each leaf-node, the contributiop &) is indicated. Supposing that
M. = 20%, in the left case we have thaj is live sincep.(sg) = % > M., whereas in
the right case is deadsincep.(sg) = § < M.

Once we have built the sé&t we can apply the strengthening only on live states.

5.2 TheSTRENGTHENI NG Procedure

As described in the previous Section, steengtheningf the controllerCTRL is ap-
plied only on the set olive statesS. The STRENGTHENI NG algorithm is shown in
Figure 9.
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1 STRENGTHENI NG(controller table CTRL, safe states S, int ks, double M,

doubl e My)
2
3 foreach s € S {
4 S1,...,8, = rand_disti(s), ..., rand_distg(s);
5 foreach s; € {s1,..., skt {
6 queue Q := sy,
7 a:= NULL; p.(@):=0;
8 while ((Q£0) & & (BF_Level < kg)) {
9 s .= Dequeue(Q;
10 foreach ¢t € Fr(s) {
11 if (te CIRL) {
12 it (pe(t) > M) {
13 add path froms; to t in CTRL; break;
14 }oelse if (pe(t) > pe(a) {
15 a:=1t; pe(a):=p(t);
16 }
17 } el se Enqueue(Q t);
18 P}
19 it (pe(a) > My)
20 add path froms; to a in CTRL;
21 else s; is dead,

22 }}}

Figure 9: The STRENGTHENING Procedure.

In particular, to ensure the robustness of the controllerexplore a larger number
of states obtained byandomly perturbinghe states i5. Such random changes simu-
late the possible control errors and state disturbancéséahappen in the real plant
dynamics but cannot be described by the plant model.

That is, for each state € S we apply a set of small random changes and obtain a
set of new states which, generally speaking, are not in theater. Then, from each
new states’, we start a breadth-first visit of the plant state space,psbgpit after a
given numbetrk, of levels or when we find a stat¢ such thap.(s”) > M;, thatis a
sufficiently safeontrolled state. Note that, in a sense, here we use thetatds sf the
controller asan extended setpoinEinally, let N (s") be the set of visited states during
this visit and lett be a state IS N N(s’) such thatvt’ € SN N(s') : p.(t) > pe(t')
N pe(t) > My, the path froms’ to t is stored inCTRL, otherwise we declarg dead
(see Section 5.1).

Note that, again, the choice of the constants\/; andM;, depends on the required
controller accuracy. In particulai/; is theminimum probability valu¢hat we accept
to consider a stateearto the controller and\/;, the maximum probability valuéhat
we considetoo lowto for state to besafe Obviously we require that/;, < M;.

After some iterations of this strengthening process, we lla&t the final controller
CTRL is able to driveP from any reasonable system state to llestnear state of the
optimal controller and, from there, reach a goal. ThatGBRL has been augmented
with new (state, action) pairs in order to deal with a larger number of possible plant
states. This makesiibbustwithout affecting too much its optimality.

Note that both the probabilistic analysis and the strengtigealgorithms are highly
parallelisable. Indeed, the controller states can betjwan#id in several subsets and
processed simultaneously by different processes (pyssibdlifferent machines).
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5.3 TheROBUSTNESS Test

Finally, in order to check the robustness of the final colgrpbne can apply the fol-
lowing robustness test

1. consider, for each live state in the controller, a trajgcstarting from it;

2. for each state occurring in a given trajectory, apply a random disturbamcéhe
state variables (within a user-defined range of possibteariiances), generating
a new state?;

3. apply tos? the rule associated to the controller stetéhat is nearest te.

A trajectory isrobustif, applying the disturbances above, it eventually reathes
setpoint. Using this test, it is possible to iterate thergteening process until the
required robustness degree for the controller is reached.

6 Controller Compilation

Embedding and querying the obtained numerical controllgriva small hardware or
software device is also an issue that may be addressed uGiNy(Dhi.

Indeed, the simplistic solution of embedding the contraiéble together with a
lookup procedure in the target device is realistic only ferywvsmall controllers, e.g.,
with a size that does not exceed a megabyte. Also in this sag&g some space may
be a valuable result.

To this aim, CGMurphi is able to encode the controller taldieg a representation
based on Ordered Binary Decision Diagrams [11]. As we w#, $his representation
is extremely compact, if compared with the original tabled @asy to translate in
artifacts, such as VHDL architectures or C libraries, that directly embeddable in
most of the hardware/software systems.

This phase is called controller compilation and its oveslgjorithm is represented
by theCOWPI LE_CONTROL procedure depicted in Figure 10.

Here, the numerical controller table (note that this phasédcbe applied omny
numerical controller table that is written in the CGMurphindry format) is fed to
the COVPRESS procedure, which complies it in a OBDD that compactly reprgs
the state-action binary relation encoded in the table. Tlien decision diagram is
manipulated by the&SPLI T procedure to obtain a set of OBDDs that encode state-
action-bit relations, i.e., binary functions that retursirzgle bit of the action associated
to the given state. Finally, the state-action-bit relatican be rewritten as a set of C
functions or as a VHDL architecture, ready to be embeddedsitavare or hardware
project, respectively.

6.1 TheCOWPRESS Procedure

OBDDs are directed acyclic graphs that represent booleactiins in a canonical
form. It is possible to reduce dramatically the size of an @Bi2presentation by
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COMPILE CONTROL
B COMPRESS |« Controller
///
Comp]ete
OBDD
\\\
A SPLIT .
Action-éit Action-Bit
OBDDs OBDDs
AN )z
~a -
GENERATE_C GENERATE_VHDL
C C Library ) ( vHDL Architecture )

Figure 10: Structure of the COMPILEONTROL Procedure.

means of the elimination of: duplicate terminals nodes Jidafe nonterminals nodes
and redundant tests.

A useful way to see BDDs, that will be used in this paper, ig thay encode
the compressed representation of a relatibfowever, unlike other compression tech-
nigues, the actual operations on BDDs are perfordiszttly on that compressed rep-
resentationi.e. without decompression.

On the other hand, a controller table containing a set ofggtetion) pairs rep-
resents a relatio® = {(s,a)|a is the action associated toin the controller table
between states and actions. Since BDDs encode formulaayibmuseful to represent
R through its characteristic functiafir defined as follows:

[T if(s,a)eR
Cr(s,a) = { F otherwise

Now, to write a definition of” as a boolean formula, we first have to represent its
arguments, i.e., states and actions, in terms of logic bks$a To this aim, we expand
them to their binary memory representation.

Let suppose that states areit values and actions are-bit values. We writes[i]
andal[i] to denote théth bit of states and actiom,respectively.

Letz;, ¢ = 1...nandy;, j = 1...m ben + m boolean variables. A stateis
then be represented by the formula

. ) o Z; if 8[7] =1
fol@y, ... an) = 4_{\/ I; wherel; = { 5 i sl =0

Eachf; is a boolean formula in variables that is true if and only if its variables are
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assigned with the bits of (denoting, as usual, the boolean true witand the boolean
false with0). In the same way, an actiencorresponds to the formula

B , oy ifai]=1
Jayr, - ym) = _7{\ l; wherel; { g; ifali=0

Therefore, the controller characteristic functi©p can be encoded by the boolean
formula

fR(xlw--;Inaylw--;ym): \/ (fs/\fa)

(s,a)ER

fr is a boolean formula im + m variables that is true if and only if the variable
assignment corresponds to the encoding ©f,a) pair for which R(s, a) holds.

For example, assume that the controller table containsdatmning 2-bit states
s = 00,8’ = 01,s” = 10, with the following associated 1-bit actioms= 0,u’ =
0,u” = 1. Then the formula for the characteristic relation wouldflae= 71 - T2 - 41 +
Z1-x2-Y1+ 2122 Y1

Moreover, we have to fix some BDD encoding parameters, nathelyariable
ordering in the boolean formulas and the dynamic reorderiathod used by the BDD
package.

Indeed, the BDD structure and therefore the compressiam cah be influenced
by the original ordering of the variables in the boolean folas presented to the BDD
package. In particular, we recall that the variables in oDDB are the state bit vari-
ables, namely:;,i = 1...n, and the action bit variableg,,: = 1...m. Thus, we
may consider the variable orderings arising from all thesfide combinations of the
following conditions:

e the state bit variables and the action bit variables can tered with different
endianness, that is from the most significant bit to the leasice-versa;

e the state bit variables can be placed before the action biéhias, after them or
interleaved.

Namely, we can write the functiorfiz with any of the ten variable orderings
O1...010 shown in Table 1. Note that @9 andO10 we assume. > m.

Moreover, variables can be dynamically reordered by the Biabbkage during
the construction of the final BDD. In our experiments, we ugedfourteen dynamic
reordering methods offered by the CUDD package.

The COVPRESS algorithm, whose pseudocode is shown in Figure 11, implésnen
the technique described above.

After reading the number of bits in the controller states aufions, the
BDD_encodi ng procedure creates the corresponding set of boolean vesiaband
¥, respectively.

Then, for each entry of the controller table, a new BIbDs created as the ap-
propriate conjunction of the state and action variablegpdrticular, the code checks
every bit in the state and adds to the ByD a conjunction with the corresponding
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o1 L1 Tnyl - Um

02 L1 Tnlm Y1

03 Tn T1YL - Ym

04 Tn e T1Ym - Y1

05 Y1 YTl T

06 YL Ym@n - T1

o7 Y Y1TL - T

08 Y - Y1Tm - 1

09 T1Y1T2Y2 * *  TmYmTLm+1 " Tn

010 Tn, YmTn—-1Ym—1"""Tm—-nY1Tm—-n—-1"""T1

Table 1: Possible initial variable orderings

BDD COWMPRESS(control | er_table CTRL) {
read nunber N of entries in CTRL;
read nunmber n of bits in each state of CTRL;
read nunmber m of bits in each action of CTRL;
foreach j=1...n create bool ean variable xz;;
foreach j=1...m create bool ean variable y;;
BDD fr;
foreach i=1... N {
BDD E, fs, fai
foreach j=1...n //encode state bits
if (bit(CTRL[i].state,j) == 1) fs = fs A z;;
else f. = fo A ay;
foreach j=1...m //encode action bits
if (bit(CTRL[i].action,j) == 1) fo = fa A yj;
else fo = fa N uj
E = fs A fa;
fr = fr V E [ldisjunction of entries

return fg;}

Figure 11: The COMPRESS Procedure.
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variable, in its positive or negated form, based on the vafube bit. The process is
then repeated for the action bits in the BOR, and finallyE is obtained ag; A f,.

The BDD F is then added to the final BDIPg using a disjunction. When all the
controller entries have been procesdsidD encodi ng returnsfr.

As we can see, the algorithm is actually very simple, sincéhalBDD manipula-
tion is done by the external BDD package. In particular, oyplementation uses the
CUDD [15] BDD manipulation package. Such package providesge set of oper-
ations on BDDs and many variable dynamic reordering methetlich are crucial to
gain the highest possible compression factor.

Note that, to ensure the correctness of our approach, welelssdoped a parallel-
query algorithm that tests for correctness and completetiess BDD-encoded con-
troller fr with respect to the original numerical controlé’ R L. This procedure sim-
ply compares the results obtained by querying the uncorspdeand the compressed
controller with all the states in the controller table.

6.2 TheSPLI T Procedure

The BDD generated by th€OVPRESS procedure is compact, has a relatively slow
access time. Indeed, to find the actiorassociated to a given state we first need
to fix the BDD variablesey, . .., x, to the value of the corresponding state bits (i.e.,
perform a BDDrestriction), and then find the unique satisfying assignmant. . , y,,
for the obtained decision diagram, that corresponds to lihrely representation of
the) actiona. Both the BDD operations above are nontrivial and requieecthmplete
support of a BDD package like CUDD to be easily performed.

Therefore, to make the compressed controller standaloadawe to further sim-
plify its BDD encoding. To this aim, split the BDD; i n a set of BDDsfz",
i € [1...m], one for each bit of the action, defined as follows:

i Y1y Yim 1 Y10 Y
zx T _ ) y Y1—1y Yi+1, s Ym
fR ( ! ’ 7L) fR(Ila-"a'r’ruyla"'ayi—lalayi-‘rla'- -7y7n)

In other words, fz’, if applied to the logical encoding of a particular state
(z1,...,z,) is true if and only if there is an action in the controller ligbassoci-
ated with such state, which has an 1 in its i-th bit. Howevieceswe know that such
an action, if exists, is unique, we can reformulate the dagimiof fr" as follows:
“fr'(xz1,...,2,) istrue if and only if the i-th bit of the action associatediwtihe state
represented by, ..., x, is 1"

Thus, the new set of BDDs can be used to get the action assd¢@a given state
by simply calculating their value with respect to the valéadssignment corresponding
to the state binary encoding. This operation is extremedy ead fast to implement
and does not need any advanced BDD manipulation algorithm.

6.3 TheGENERATE Procedures

Due to their simplicity, the BDDs above can be easily rewritas boolean expressions
in any programming language. Indeed, the translation gievery straightforward
and requires only a visit of the OBDD graph.
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Letn be a node of the OBDD. Ifitis a constant (true or false) nolde ttanslation
is trivial. Otherwise, leV/'(n) be the logic variable associated to the node, and(ej
andE(n) be the two children of. for V(n) = true andV'(n) = false, respectively.
We can define the functiof’” of n as follows:

n = true constant true
n = false constant false

CT(n) = IF (V(n))
otherwise THEN CT(T(n))

ELSE CT(E(n))

where we use the common IF-THEN-ELSE construct to encod®©BI2D structure.
Such construct is indeed present in almost any programraimgulage. Moreover, note
that the expression obtained through this simple tramslatbes not need any further
simplification, since all the possible reductions to theearhdng decision tree have
been already done by the OBDD package.

In particular, we can translate the OBDD in a set of C sour@s fdontaining
functions likechar get _action_bit_i (char+ state), generated through the trans-
lation process above applied to the root node of the OBDRS a main func-
tion char *control (char+ state), which collects the results of the calls to each
get _action_bit_i and returns the complete action associated to the given $tate
that both actions and states are treated as generic byys arra

This translation is linear in terms of the required spacel e resulting repre-
sentation can be easily embedded in a (small) hardwareelsysulting in good time
performances.

Actually, the effective implementation of this encodingoistimised and, in par-
ticular, it looks for common sub-diagrams in order to avadursive calls. Thus, for
example, from the OBDD representikg XOR y XOR z we obtain the following
code:
tnmpl y ?2z: 'z

tnp2 X ? tnmpl @ ltnpl;
result = tnmp2;

Moreover, internally the representation can be furthemaiped and restructured
to accommodate the C compiler limitations: for example ftimetions are split in sub-
functions (possibly included in different source fileshiétcontained logical expression
exceeds the compiler stack. To this aim, in our implememtetie GCC [20] compiler,
version 3.4.4, has been used as a reference.

Similarly to the C translation, we can translate the congedsontroller table in a
VHDL definition. We start by defining the whole controller (better, its characteristic
function) as a module through @&mtity definition as the following:

entity control is

port (

state : in bit_vector (n downto 0 )
action : out bit_vector (mdownto O )

end control;
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The module has a set of input lines, representing the stistedlnid a corresponding set
of output lines, composing the action bits.

Then, we give the behavioral description of the actual disctihat compute the
module outputs. Action bits are computed by a sepgateessesthat are executed in
parallel in anarchitecture as defined in the following:
architecture controller of control is

begi n
process (state)

action(0) <= code for the first bit
end process

process (state)
action(n) <= code for the mth bit
end process

end controller

The actual code that computes the value of each bit and adsigrihe correspond-
ing output line is the same of the C translation, since VHDpprts the IF-THEN-
ELSE statements.

7 Case Studies and Experimentation

To show the effectiveness of our methodology and the usglifi our tool, in this
section we present the experimental results related te taee studies. Namely, we
first consider the following case studies.

e theinverted pendulum on a caproblem shows a variant of the inverted pendu-
lum problem which presents an highly nonlinear dynamics;

e thetruck and trailer obstacles avoidangeoblem shows the ability of our tech-
nigue to deal with very complex hybrid problems.

o finally, the turbogas controlproblem (that is only summarised in this paper)
shows a case where the huge system state space would beilnlgtsanalyse
with other tools based on explicit state space generation.

7.1 The Inverted Pendulum on a Cart Problem

As a first example, we consider the inverted pendulum on apratilem (Fig. 12),
according to the formulation presented by Junge and Osinv]i.

7.1.1 Problem Formulation

The system consists of a planar inverted pendulum on a crirtbves under an ap-
plied horizontal forceu, constituting the control. The positian of the pendulum is

measured relative to the position of the cart as the offsglednom the vertical upright

position. The motion of the pendulum is modelled by the folltg equations:
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Figure 12: Inverted Pendulum on a Cart.

Ty = I
_ %sin(zl)fémrzg sin(2z1)—

moy
ml

cos(zq)u

T(2) %—mr cos2(z1)

where the parameters are as in [27], i.e. the mass of thesclft+ 8kg, the mass
of the pendulum inn = 2kg, the distance between the center of mass and the pivot
is ! = 0.5, the mass ratio isn, = m/(m + M), and the gravitational constant is
g=9,8m/<,
The instantaneous costgér, u) = £ (0.1z7 + 0.05z3 + 0.01u?).

7.1.2 CGMurphi Model Description

Now, we can start to build our CGMurphi model by defining thetestof the system,
which is represented by the set of thtate variablesAs shown in Fig. 13, CGMurphi
allows one to define the typeeal ( m n) in order to represent real numbers with
digits for the mantissa and = logio || + 1 digits for the exponent.

type real _type : real (4,9);
var x1: real _type; --pendulum angle
x2: real _type; --angular velocity

Figure 13: CGMurphi state definition for the Inverted Pendubn a Cart.

Note that, since CGMuphi is not able to deal with differeinéiguations such as
the ones describing the pendulum motion shown in the preweation, to create the
model we discretised the continuous dynamics and we usektisime steps and step
functions for the state values. In particular, we approxeda; to 0.01, 2 t0 0.1 and
t to 0.1. These approximations were experimentally validated as|aake to provide
valid solutions for the original problem.
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Region of Interest.

As second step, we have to define the region of interest focah&nuous variables.
The boundaries are imposed by physical, theoretical, agié&ign constraints.

For instance, when dealing with angles, as in the invertediplem case, a typical
range would bgd—=/2, /2] rad. For the angular velocity, instead, the boundary is
directed defined by the safety constraint of the problemhsab the range i$—38, 8]
rad/sec.

Finally, physical properties of the control device define thnge of the control
inputs. In this case, as functignsuggests, we can assume [—0.7,0.7].

Thus, we can add to the model the upper bounds for the stasbles making use
of constants and data types as shown in Fig. 14.

const
M N_X1: -4; MAX X1 : 4;
MN X2 : -8, MAX X2 : 8;
M N_FORCE: -0.7; MAX_FORCE: 0.7; Step_Force: 0.1;
TOLL_X1 : 0.04; TOLL_X2 : 0.3;
TIME : 0.1;
type
real _type: real (4,9);
force_type: M N_FORCE.. MAX_FORCE;
interval _force : 0..((MAX_FORCE-M N_FORCE)/ St ep_Force);
x1_type : -4..4; x2_type : -8..8;

Figure 14: CGMurphi user-defined data types for the InvePtexddulum on a Cart.

Setpoint and Guarded Transition Rules.

As final step, we have to define the Setpoint and the Guardetsifian Rules.

For the inverted pendulum problem, the setpoint is the sstadés near the upright
equilibrium position £; = 0,z = 0). So we extend our model with the setpoint
definition as shown in Fig. 15.

function Equilibrium(xl:real _type; x2:real _type) : bool ean;
begi n
return (x1 <= 0.0 + TOLL_x1 & x1 >= 0.0 - TOLL_x1 &
X2 <= 0.0 + TOLL_x2 & x2 >= 0.0 - TOLL_x2);
end;

setpoint "Upright Equilibriunmt (Equilibriumxl, x2));

Figure 15: CGMurphi setpoint definition for the Inverted Belum on a Cart.

Finally, we have to define thguarded transition rulethat is the core of our model,
since it regulates the evolution of the system. We take friem 2 we have the condition
for which the transition can take place. Namely, given aestatve are interested in
the successor states ©bnly if s is within the region of interest andis not a goal. In
this case, the set of successor statesisicomputed by applying the transition ruite
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eachcontrol input we are considering, this is done by usingrtheéeset construct,
as shown in Fig. 16.

function InRange(x1:real _type; x2:real _type) : bool ean;
begi n
return (x1 <= MAX x1 & x1 >= MNXx1 &
X2 <= MAX_Xx2 & x2 >= M N x2);
end;
ruleset f : interval _force do
rule "Transition" (!Equilibriumxl, x2)) ==>
var
tnp_x1 : extensive_type; tnp_x2 : extensive_type;
tnp_force : force_type;
begi n
tnp_force : = M N_FORCE + (f=*Step_Force);
tmp_x1 : = next_x1(x1, x2, TIME);
tnp_x2 := next_x2(x1, x2, tnp_force, TIME);
if InRange(tnp_x1, tnp_x2) then

x1 = tnp_x1;
X2 1= tnp_x2;
endi f;
end;
end;
end;

Figure 16: CGMurphi transition rule for the Inverted Pendnlon a Cart.

Model Compilation.

Once the model has been defined, we can start the controliénesjs. First, we
have to compile the CGMurphi model through tira compiler which takes as in-
put the filenodel _name. mcontaining the model description. This generates a file
nodel _nane. C, containing the C++ code implementing the body of rulest states,
setpoint, functions and procedures, plus other stuffs.

Note that the option - ct r| enables the model compilation for controller gener-
ation, while without parameters it will be performed a vestion (this mode can be
used to verify the generated controller).

As final step, we have to compile the fit®@del _nane. Cwith the standard C++
compiler and launch the executabtedel _-nane. C. 0. In this step, the user can
specify the amount of memory for the hash table (and thusm@ieng the maximum
number of states which can be visited) and the amount of meifvorthe controller
table, that is the maximum number of controllable statestheumore, it is possible
to fix the maximum level of bfs to be explored (this option igdigo set a finite time
horizon).

7.1.3 Optimal Controller Generation

To apply our approach, we used BTl MAL_CONTROL procedure of Fig. 2 to find a
suitable discretisation of this DTHS and compute the cpwading controller. We re-
quire (at least) a trajectory control of 98% and a trajectigay of 5%. Table 2 shows
some different discretisation tried and the correspongaiglation results, where the
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columns show the main evaluation parameters describeddtioSet.3. The chosen
discretisation approximates the valuespfandz, to 1/32 (radians) and /128 (radi-
ans per second), respectively. With this discretisatigaiie@, the problem state space
contains385 x 501 = 192, 885 states and7 control actions, thus a total 6279, 045
transitions.

Discretisation Uncontrolled | Discretised Trajectorie§ Real Trajectories| Traj. control | Traj. delay
T T2 States out of horizon out of delay
1/16 5/64 39,363 0 39,363 74% 5%
1/32 | 5/128 3,476 0 3,476 98% 5%

Table 2: Discretisation of the Inverted Pendulum on a Cart

EXPLORE

Progress Report:

1000 states explored in 0.14s,
1798 predecessors. 0 goal states reached,

with 894 states in the queue
current level: 3.

Fi nal Report:
192885 states explored in 240. 65s.
2206920 predecessors. 63 goal states reached.

SYNTHESI SE
Fi nal Report:
151394 control l ed states

Figure 17: CGMurphi execution.

The results of the synthesis are reported in Table 3. Thesponding execution
trace is shown in Figure 17.

CTRL Size
1,478 Kb

CTRL Rules
151,394

Transitions
3,277,974

States
192885

Time (sec.)
241

Table 3: Controller Synthesis for the Inverted Pendulum Qage

Fig. 18 shows an example of how the controller drives the pkemd to the upright
equilibrium position.

7.1.4 Robust Controller Generation

Due to some structural properties of the inverted pendulara cart problem, robust-
ness can be achieved in this controller by simply using patiation. In other words,
when the controller is presented with a state that is noteérctintroller table, it should
simply choose the nearest states in the table and use themtetpadlate the corre-
sponding action. For this reason, we instructed CGMurpbkip the robust controller
generation phase and proceed directly with the compilaifahe optimal controller.
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Figure 18: Inverted Pendulum on a Cart trajectory with ahitionditionz: = (3.1, 0.1]
(z1(—),z2(— — —) versus time).

7.1.5 Controller Compilation

Table 4 shows the compression results for the optimal cihetrboth using LZ on the
binary controller table and using the CGMur@®VPRESS procedure.

Normal | Lz \ BDD
Entries 151394
Size | 1,478 Kb | 90 Kb (6.1%) | 215 Kb (14.6%)
Time 3ms 206 ms 1ms

Table 4: Inverted Pendulum on a Cart controller compresssults

We see that on a small controller the BDD compression has arloempression
ratio than LZ, but always better access times (1ms vs. 2Q&imek it does not require
any decompression to read the table entries.

7.2 The Truck and Trailer Obstacles Avoidance Problem

The goal of the controller is to back a truck with a trailer amtspecified parking place
starting from any initial position in the parking lot. Monegr, the parking lot contains
some obstacles, which have to be avoided by the truck whileeonzering to reach
the parking place. The obstacles position and geometryieea q a tabular way, i.e.
each obstacle is a composition of bidimensional figures défihrough the position of
their vertexes relative to the parking lot origin. This issasonable representation that
could be automatically generated, e.g. by analysing anénoédghe parking lot. We
also disallowcorrective maneuveyshat is the truck cannot move forwardtiacktrack
from an erroneous move.
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In this setting, finding a suitable maneuver to reach the §oah any starting
position is a hard task. On the other hand, as pointed outeinntnoduction, finding
anoptimalmaneuver is &erycomplex problem, that cannot be modelled and resolved
using common mathematical or programming strategies.

Moreover, note that the states of this system contain battiruous variables (e.g.,
the truck position) and discrete ones (e.g., the booledablarthat indicates if the truck
has hit an obstacle). In suchthgbrid systeninterpolation techniques cannot be use to
obtain a robust controller.

In the following, after giving more details about the truakdatrailer model, we
show the results obtained by using the CGMurphi tool to sgsige an optimal and
robust numerical controller for this problem.

7.2.1 Problem Formulation

Y

Figure 19: Truck and Trailer System Description.

Our model of the truck and trailer is based on the set of egnatpresented in
[36]. Moreover, in our setting thparking regionis an open bounded region &2,
delimited by a set of obstacles. We cilthe parking region. The system has four state
variables relative to its position if: the coordinates of the center rear of the trailer
(z,y € [0,50]), the angle of the trailer w.r.t. the-axis (s € [—90°,270°]) and the
angle of the cab w.r.t the-axis (6 € [—90°,270°]). Moreover the system hastatus
variable ¢, which has the following possible valuessrmal, when the truck lies i’
and the jackknife adjustment must be not appliptkknife when the truck lies i’
and the jackknife adjustment must be appliethp when the truck is parked and then
it must not move anymoré&orbidden if the truck is outsidd” or if it hits an obstacle.

The dynamics for the truck and trailer is shown in Figure 2@ragybrid automa-
ton [23]. Each state of the automaton represents a mode &fThS (i.e. a value for
q). When no action is described, it is assumed that the plarg doechange its state.

We assume that the truck moves backward with constant sfp@ed/a, so the only
control variable is the steering anglec [—70°,70°]. We also allow to take values
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Figure 20: Truck and Trailer Hybrid Automaton.

outside this range to mean that the truck is parked and it moistove anymore.
Figure 19 shows a schematic view of the truck and traileresyswith its state and
control variables. We single out ten points on the truck aaiter border (displayed in
the Figure 19 by bold points) aspresentativef the truck and trailer position.

If the values of the state variables at timareq][t], x[t], y[t], fs[t] andb-]t], and
the steering angle is, then the new values of state variables at timeé are determined
by the following equations:

oft+1) = z[t] — B x cos(0s[t]) if q[t] € {normal, jackknife}

x[t] otherwise
_ y[t] — B * sin(0s[t]) if q[t] € {normal, jackknife}
vit+1] = y[t] otherwise
o5t +1] = 0s[t] — arcsin (%W) if g[t] € {normal, jackknife}
0s[t] otherwise
Oc[t] + arcsin (T;Lf"éé) if ¢[t] = normal
oot +1] = 7 (6ct] + aresin (522250 ) ) if q[t) = jackknite
0c[t] otherwise
nornal it 4 (elt], 18], 051£], 60 #]) A ~3(65[¢], e [e])A
Au € [=70,70] A q[t] € {normal, stop}
gion — ] sacmise it ~v(alt], ylF], 65[1], 6c ) A 30 (1), O ) A
1 = Au € [=70,70] A q[t] # forbidden
stop if w ¢ [—70,70] A q[t] € {stop,normal}
forbidden otherwise

whereA = r x cos(u), B = A x cos(0c[t] — 0s[t]), r = 1 is the truck movement
length per time stepl.s = 4 and Lo = 2 are the length of the trailer and cab, re-
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spectively (all the measures are in metetg);[t], y[t], Os[t], O [t]) returns true iff the
truck-and-trailer system is i, j(0s[t], 0c[t]) returns true iff 0 s[t] — 0 [t]] < 90° and
J(0c) computes the correct value fé: when the current position does not respect the
jackknife constraint.

7.2.2 CGMurphi Model Description

In the CGMurphi model we use real values to represent the staiablesr andy,
whilst for the angle values (i.6fs, 6 andu) it is sufficient, w.r.t. the system dimen-
sions, to use integer values. Fig. 21 shows the descripfidheodata types and the
state in CGMurphi.

const M N_ANGLE: - 90; MAX_ANGLE: 270;
SP_X:10; SP_Y:0; TOLL_X:1; TOLL_Y:1;
SP_THETA_S: 90; TOLL_THETA_S:5;

M N_U: -70; MAX U:70; STEP_U. 5;

type angle_type : M N_ANGLE.. MAX_ANGLE;
real _type : real (5,99);
interval _u : 0..((MAX_u-M N_u)/STEP_u);

var pos_x : real _type;
pos_y : real _type;
theta_s : angle_type;
theta_c : angle_type;

Figure 21: Truck and Trailer State within the CGMurphi Madel

Moreover, we define sonteleranceconstants to set up a range of admissible final
positions and angles for the center rear of the trailer. @b@srances are used to define
the CGMurphi setpoint, as shown in Fig. 22.

set poi nt " Par ked"

(pos_x <= SP_X + TOLL_X & pos_x >= SP_X - TOLL_X &
pos_y <= SP.Y + TOLL_Y & pos .y >= SP.Y - TOLL Y &
angl e>=SP_THETA S-TOLL_THETA S &
angl e<=SP_THETA S+TOLL_THETA S );

Figure 22: Setpoint for the Truck and Trailer within the CGigdhi Model.

Fig. 23 shows the main rule of the model. This rule (by meansthef
rul eset construct) computesll the next positions of the truck by considering
all the defined control actions (i.e. the possible maneuvers). The computa-
tion is performed by the external C functiongext [x,y,t het a_s,t heta_c] and
jackkni fe(tnp_thetas,tnp_thetac). In this way the description of the
system dynamics is directly embedded in the external Crijbra

To embed the obstacles in the model, we approximate themghriheir bounding
rectangles (or rectangle compositions). Then we conshierepresentativepoints
of the truck-trailer position and, each time a new truck posiis computed, we use
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ruleset u : interval _u do
rule (!Parked(pos_x, pos_y, theta_s)) ==>
var tnp_x:real _type; tnp_y:real _type;
tnp_theta_s:angle_type; tnp_theta_c:angle_type;
tnp_u: u_type;
begi n
tnmp_u: =M N_u + (uxSTEP_u);
tmp_x: =next _x(pos_x, theta_c, theta_s, tnp_u, R);
tnp_y: =next_y(pos_y, theta_c, theta_s, tnp_u, R);

tnp_theta_s: =next_theta_s(theta_s,theta_c,tnp_u, R L_S);
tnp_theta_c:=next_theta_c(theta_c,tnp_u, RL_SL_O;
tnp_theta_c: =jackknife(tnp_theta_s,tnp_theta_c);

if (!isForbidden(tnp_x,tnp_y,tnp_theta_s,tnp_theta_c,
ML_S, L_C, M N_X, MAX_X, M N_Y, MAX_Y))

t hen
posS_X = tnp_x;
pos_y = tnp_y;

theta_c := tnp_theta_c;
theta_s := tnp_theta_s;
endi f;
end;
end;

Figure 23: Transition Rule for the Truck and Trailer withiretCGMurphi Model.

the functioni sFor bi dden() to check if any of these points has hit the parking
lot obstacles or borders. Therefore, our controller sysithalgorithm considers only
feasible maneuvers to the goal state.

Moreover, in order to obtain a morebustcontroller we also considered the ma-
neuvering errors due to the truck-trailer complex dynanrimpprties (e.g., friction,
brakes response time, etc.) that cannot be easily embedded mathematic model.
We used such errors to drawsacurityborder around each obstacle and used these
augmented obstacles in the collision check described above

To estimate maximum maneuvering error we appliddante Carlo’s methodle-
scribed as follows. We consider a large set of valid parkatgbsitionsS = {s;|1 <
kE < 500,000}. Given a positiors;, € S, (1) we apply a random maneuver;, ob-
taining the new positior,. Then (2) we randomly perturf, generating the position
st and apply the same maneuvey, on s} obtaining the positios,. Finally, (3) we
compute the distance of the selected truck paiftbetween the positions, ands?.
This process is repeated 200 times for each positidf) ifius analysing 100 millions
of perturbations. The security border size is the highegadce measured for a point
in the step (3). We found out that this distance is 298

7.2.3 Optimal Controller Generation

We tested our methodology using several obstacles tosloghs an example, we
consider the map shown in Figure 24, where the black shapessent the obstacles
and the security borders are drawn grey. In the following vesent the results of each
phase of our controller generation methodology.

To synthesise the optimal controller we approximate reaattes rounding: and
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Figure 24: Truck and Trailer optimal trajectory generatgdd&sMurphi from initial
positionz = 12,y = 16,05 = 0, 0c = 0.

States Transitions | CTRL Rules| Time (sec.)| CTRL Size
12,227,989| 364,334,756 1,749,586 13,708 37,589 Kb

Table 5: Controller Synthesis for the Truck and Trailer

y to 0.2 meters andgs, O andu to the nearest degree. Table 5 shows the result of the
synthesis (performed using a 2.8GHz Intel Xeon workstatiith 4GB of RAM) and
states that CGMurphi is able to deal with systems havinganal of states.

7.2.4 Robust Controller Generation

Then, we single out thive states in the optimal controller by calculating the proba-
bility p. on each state (see Sect. 5.1). Using Eq. 1 Wwite= 4 andn = 29 we obtain
the distribution of probability). shown in Figure 25. The graph shows the number of
states having a given value foy. It is clear that most of the states dire (high values

of p.), whereas there is a little but consistent sed@ddstates. If we sed/. t0 0.1, we
have that.S| = 1,493,876 and so in the last phase we have to consider 8a% of
states in the optimal controller.

Note that, in the system under consideration, there are tadslofextremeposi-
tions: (a) when the truck is very near to obstacles and (b)ywmthe truck and trailer
are in thejackknifeposition (i.e. whenfs — 6| = 90°). Indeed, in the case (a) only
a very little number of actions are safe for the truck, wherbe other ones make it
crash on an obstacle. On the other hand, in the case (b), @rysdifficult to bring
the truck outside the jackknife position, since the trucklddollow an exceedingly
long almost circulartrajectory. Therefore this phase correctly identifiedeadall the
states corresponding to positions of case (a). On the otrat, Ipositions of case (b)
could be identified adeadonly after the third phase.
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Figure 25: Distribution op. on the optimal controller states for the Truck and Trailer
controller.

Finally, we consider the se§ and we perform the strengthening of the optimal
controller using the algorithm of section 5.2 and choosing= 4, M; = 0.7 and
M;, = 0.2 as the constant values.

After the strengthening phase, a significant number ofentd,725,529) has been
added to the controller to make it robust, due to the complexi the truck-trailer
dynamics. On the other hand, 218,260 more states of theotlenthave been marked
asdead these states correspond to jackknife positions of thekteund trailer. The
final controller now handles a total of 3,256,855 states tnsize is 71,650Kb.

Note that the last two phases werarallelisedby partitioning the controller states
in 9 subsets and performing the analysis and strengtheepeyately for each of these
partitions using different workstations. In this way, getang the robust controller
took less than an hour.

In order to check the robustness of final controller, we atergd, from eachve
state in the controller, a trajectory starting from it. Faclk states occurring in a given
trajectory, we applied a random disturbance on the staiahlas, generating a new
states”, and then we applied t&” the rule associated to the controller stat¢hat is
nearest tasP. A trajectory isrobustif, applying the disturbances above, it eventually

reaches the goal state.

Range of Disturbances Range of Disturbances Robust
for x,y for 05,0 Trajectories
+0.1m +5° 95%
+0.25m +5° 94%

+ 0.5m +5° 91%

Table 6: Truck and Trailer results about controller robasm
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As shown in Table 6, we obtain completely satisfying perages of robust trajec-
tories: even in the presence of big disturbances (0.5 mfgersandy and 5 degrees
for 6, andé.) the controller robustness is more than 90%.

7.2.5 Controller Compilation

Normal | LZ [ BDD
Entries 3,256,855
Size | 71,650 Kb | 22,644 Kb (31.6%)| 7,038 Kb (9.8%)
Time 89 ms 3173 ms 108 ms

Table 7: Truck and Trailer controller compression results

As final step, we compressed the controller using the scheasepted in Section 6.
Results are in Table 7. As we can see, the controller has &igsize. However, the
best OBDD compression scheme is able to reduce the size obtheoller up to 90.2%
space savings, that is 21.8% more than using LZ77 compreddioreover, the OBDD
compression wins also with respect to the access time.

7.3 The Turbogas Control Problem

In this section we sketch our experimental results on usi@iGrphi for the genera-
tion of the controller for aeal world hybrid system, namely the gas turbine of a 2MW
electric co-generative power plaffCARO) in operation at the ENEA Research Cen-
ter of Casaccia (ltaly). The generated controller has togotihe plant to itsetpoint
by modifying the opening of th&uel valve In the following, unless otherwise stated,
all our data (e.g. block diagrams, parameter values, etcjaken from the ICARO
documentation [19].

Due to its complexity, this case study is still in progressistin the following we
will show only the result from the Optimal Controller Gentiwa phase.

7.3.1 Problem Formulation

Electric Power Generated by the Alternator  (Pel
Turbine Rotation Speed (Vrot)

User Demand (u) i
— |

Controller Fuel Valve Turbogas

Opening (fg102),

—e

Compressor Pression (Pmc)
Exhaust Smokes Teperature (Texh)

Figure 26: High level block diagram of ICARO Turbogas Coh8gstem.
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Actually, ICARO plant consists of many subsystems. Here nlg tbcus on one
of the many subsystems of ICARO (e.g., see [9, 7, 8]). Nam@yagus on thé&sas
Turbine ICARO subsystem, which corresponds to the block namatbogasin Fig.
26. As a matter of fact, this module consists, in turn, of mangsystems (e.g. the
compressor, the combustion chamber, the turbine itselfth@edyenerator). For our
purposes here we can simply use it as a black box and lookiapits-output model.

The Gas Turbine module has the following input variables.

e Variable f¢g102 takes value in the real interval [0,1]. This variable givhs t
opening fraction of the turbogas fuel gas valve (hamelye&®102). It takes
value 0 when the valve FG102 is fully closed (no fuel can flamagrh the valve)
and value 1 when the it is fully opened. This is@ntrol variable i.e. a variable
whose value can be chosen so as to achieve the control goals.

e Variableu models theJser Demandf electric power. This variable has to be
considered as disturbancei.e. a variable whose value we (i.e. the controller)
cannot choose. However, since our controller generat@amdgvork works on
deterministic plant models, in our experiment we alwaysusé& its nominal
value, i.e MAXU

The output variables of the module are the following.

e P, theElectric powergenerated by the alternator.

Vi-ot, theRotation speedf the gas turbine.

T..n, theTemperaturef the exhaust smokes.

Py, thePressureof the compressor.

Pa(t) = oa11P(t) + a1,2fg102(t) + oq 3u(t)

Tean(t) = a21Tean(t) + az2fgl02(t) + az 3(Pe(t) — PY)
+  2,4(Pme(t) — P.)

Viot(t) = as1Vior(t) + as2fgl02(t) + a3 3(Per(t) — PY)

Pmc(t) < [MIN,P,,LC, MAX,P,,LC]
| Pme(t) | < MAX_D_Ppe
u(t) € [0, MAX.U]
la(t)| < MAX.DU

Figure 27: Turbogas ODE model used for our analysis.

For the purposes of our analysis we used the ODHifhary Differential Equatiop
model, shown in Fig. 27, to link the turbogas input variaiéh output variables. Of
course such a model is only valid in a neighbourhood of theoset.
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const -- constant declarations

SAVPLI NG FREQ 100.0; -- Inverse of the sanpling tinme

-- (Hz)
MAX_U: 200.0; -- Max user demand val ue (kW
MAX D U: 10.0; -- Max of tinme derivative of user demand
MAX_D P: 0.1; -- Max of tinme derivative of conpressor

-- pression

MAX_PRES_COWPR: 13.0; -- Max conpressor pression (bar)
M N_PRES COWPR: 11.0; -- Mn conpressor pression (bar)
Power _setpnt: 2000.0; -- Setpoint of Electric Power

-- (kw
Texh_setpnt: 552; -- Setpoint of exhaust snokes

-- tenperature (C

Vrot _setpnt: 75; -- Setpoint of rotation speed (RPM
Pow_v_coef: Power_setpnt; -- ap; in Fig. 27
Texh_v_coef: 0.1+Texh_setpnt; -- «o1 in Fig. 27
Vrot_v_coef: 2+xVrot_setpnt; -- ag; in Fig. 27
FREQ 1: 100; -- frequency injection disturbances

type -- type declarations
Di sturbance_type : -1..1;
real _type : real (4, 2); -- used for all real variables
I ongint _type : -50000 .. +50000; -- used for counters

var -- (global) variable declarations
step_counter : longint_type; -- initialized to 0
-- \We do: step_counter := (step_counter + 1) FREQL-- at each tinme
stepPower : real type; -- Generated Electric Power

Figure 28: A glimpse of the CGMurphi declarations used inThebogas controller
model.

Note that, according to the model in Fig. 27, the compressessureP,,. can
change valueondeterministicallyas long as it satisfies the constraints given in Fig.
27. We do not need a more detailed model here since the cosopi@essure is only
used as input to the fuel gas valve controller whose requrgsndo not involve the
COMpressor pressure.

Finally, the plant setpoint, that is the set of goal stategufplan, is given by the
following values of the output variables:

e Electric Power setpoint valug?"=2000 (KW).
e Exhaust Smokes Temperature setpoint valtfg; =552 (C).
e Turbine Rotation Speed setpoint valug? =75 (RPM)

e Compressor Pressure setpoint valig; =12 (Bar)

7.3.2 CGMurphi Model Description

In order to use CGMurphi, we discretise the ODEs given aboitle sampling time
0.01 seconds, as suggested in [19], and truncating reat¢dalariables to 3 digits of
mantissa and 2 of exponent. An example of the CGMurphi codé imsthe declaration
section of our model is in Fig. 28.
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Note that in this way the discretised state space consistppfoximately2!8°
states. This rules out all brute-force methods consistingxplicitly enumerating the
state space.

7.3.3 Optimal Controller Generation

[ Reachable Stateg Transitions | Controller Rules [ Time (sec.) [ Used Memory [ Controller Size |
| 11240 | 112400 | 11240 | 141 | 10,115Kb | 549Kb |

Table 8: Turbogas controller synthesis results

Table 8 shows the results of the controller synthesis. Asamesee, CGMurphi was
able to complete the controller generation with 10 MegabgfdRAM, since the system
reachable states are indeed omly 240, compared to th@!®° states resulting from
the model specification. We are still working on this systamg we expect that the
controller validation will show that the controller needshte strengthened by adding
more states to the reachable region. However, this firsitrissuery promising and
shows how reachability analysis can help in the generati@owatrollers for complex
systems.

8 Conclusions

In this paper we presented CGMurphi, an automatic tool fergteneration of numeri-
cal controllers. The tool exploits explicit model checkileghniques, in particular the
reachability analysis algorithm, to sensibly reduce tHertf needed to analyse the
dynamics of very complex systems, such as nonlinear andchgpstems, which are
often out of scope for the current controller generatiortstoo

Moreover, CGMurphi is also able to apply a suitably adaptglsida algorithm
during the system state space exploration, to comgptienalcontrollers, and to make
them robust thanks to an iteratigtrengtheningalgorithm which incrementally add
new control actions to the controller table in order to handiexpected system states
due to disturbances.

Finally, since numerical controller tables may containlianils of state-rule pairs,
CGMurphi includes a OBDD encoder for such tables, which gatee a very compact
still functional representation of the original contro]leshich can be in turn exported
in C or VHDL language, to be easily embedded in softwarefvard devices.

We extensively experimented our methodology on a variegcafiemic case stud-
ies, including thenverted pendulum on a caand thetruck and trailer with obstacles
avoidance but also on real industrial applications, like thebogas control system
whose development is still in progress.

The experimental results show that CGMurphi is a very videsptoduct that can
be used as a complete and effective controller generat@ridochallenging complex
systems.
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