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Abstract

In the last years, the use of controllers has become very common, thusmuch
work is being done to create automatic controller synthesis tools. When dealing
with critical systems, most of the times such controllers are required to beoptimal
androbust, i.e., they must achieve their goal with minimal resource consumption
and be able to handle also unexpected situations. All these requirements, which
are intrinsically difficult to satisfy, become even more challenging when dealing
with hybrid systems, which represent a wide range of real world systems.

In this paper we propose a model checking based tool, namely CGMurphi,
which assists in the the generation of optimal and robust numerical controllers for
systems having complex dynamics, possibly hybrid systems. The tool provides
a complete controller generation solution, being also able to effectively compress
the controllers and encode them so that they can be directly embedded in soft-
ware/hardware systems.

The tool has been widely experimented with very promising results. In par-
ticular, the present paper reports the complete experimentation results relative to
two academic case studies, and the preliminary achievements obtained by applying
CGMurphi to an industrial critical system.
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1 Introduction

A control system (or, shortly,controller) is a hardware/software component that con-
trols the behaviour of a larger system, calledplant. In a closed loop configuration, the
controller reads the plant state (looking at itsstate variables) and adjusts itscontrol
variablesin order to keep it in a particular state, calledsetpoint, which represents its
normalor correctbehaviour.

In the last years, the use of sophisticated controllers has become very common
in robotics, critical systems and, in general, in the hardware/softwareembedded sys-
temscontained in a growing number of everyday products and appliances. In partic-
ular, much work is being done to provide methodologies for the automatic (or semi–
automatic) synthesis of controllers directly from the plant specifications (see Section
1.3).

Numerical controllers are tables indexed by the plant states, whose entries are com-
mands for the plant. The commands are used to set the control variables in order to
reach the setpoint from the corresponding states.

Beyond the creation of the correct controllers, there are several other important
tasks that have to be considered. First, most of the times thecontroller has to beopti-
mal, i.e., from any state it has to select thebestcontrol path to the setpoint, with respect
to a cost function that is often the time-to-setpoint (time optimality). Such optimal con-
troller generation task is obviously harder than the previous one, since optimisation
commonly requires more complex calculations and larger working data storage.

Moreover, a major problem of numerical controllers is theirrobustness, i.e., the
state read from the plant may not be in the controller table, although it may becloseto
some states in the table. This commonly happens when the controller drives a physical
system that is subject to approximation and disturbances.

Finally, since controllers have often to be embedded in small devices, their size can
be an issue. Indeed, the size of a numerical controller can behuge, especially if it has
to be both optimal and robust. Therefore, suitable compression techniques should be
exploited, but these may impact the controller access time,that is another important
issue.

All the issues above become even more challenging when dealing with hybrid sys-
tems, i.e., systems described by both continuous and discrete components. This kind of
system is actually very common: for example systems with relays or switches, motion
controllers, constrained robotic systems, flight control systems, analog/digital circuit
design, biological applications, etc. Unfortunately, hybrid systems often present a very
complex dynamics, thus the (optimal) controller generation is harder to achieve, and
the robustness cannot be obtained using simple interpolation techniques, as happens
for continuous systems (e.g., see [30]), thus more complex approaches must be applied
(e.g. see [38, 28]).

1.1 Motivations

Unfortunately, there are wide classes of real-world systems that are hardly tractable
with the current controller generation techniques. In particular,
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• when the system dynamics is very complex and does not satisfythe Lipschitz
condition ([1, 14]), like it is common for hybrid systems (i.e., systems described
by both continuous and discrete variables), the control problem cannot be solved
using analytical methods like [30, 18].

• if the system dynamics is nonlinear, the control problem cannot be solved by a
dynamic programming approach ([10, 6]), since it requires abackward decom-
position of the cost function.

• finally, local heuristics (e.g., fuzzy rules) perform poorly in in nonlinear or hybrid
systems, since the presence of discontinuities may make a good localoften action
not suitable for the final goal.

Therefore, for nonlinear and/or hybrid systems, even the synthesis of a good nu-
merical controller (not to say an optimal or a robust one) seems to be computationally
difficult. To the best of our knowledge, there is no automatictool available that is able
to generate optimal and robust controllers for such systems. Moreover, all the current
controller generation techniques rarely address the issueof controller size and access
time, leaving this problem to the software and hardware manufacturers.

1.2 Contribution

In this paper we propose an automatic model checking based methodology for the
generation of optimal and robust numerical controllers forsystems having complex
dynamics, possibly nonlinear and hybrid systems. In particular, we focus on plants
whose state is fully observable, i.e., all the variables which define the plant state can be
read by the controller at any time. However, this is not a big limitation, since it allows
us to model realistic systems such as the ones presented in the case studies (Section 7).

Symbolic (i.e., OBDD based) model checking techniques havebeen already suc-
cessfully applied to generate controllers for a wide class of systems. However, they do
not perform well when applied to hybrid systems, which usually have a very large state
space. Thus, our idea is to useexplicitmodel checking techniques to perform areacha-
bility analysis, which allows to compute the exact reachable region of the system state
space, i.e., all the states reachable from the initial ones through some action sequence.
This region has usually a complex structure, thus is not trivial to define without auto-
matic support. However, since the reachable region is oftencomposed only of a small
fraction of the possible states specified by the system statevariables, it allows to build
a representation of the system dynamics which focuses only on the actual behaviour of
the system, which can be easily analysed to generate the controller.

Moreover, we also perform aprobabilistic analysis of the plant state space in or-
der to effectively apply astrengthening algorithmwhich extends the initial controller
making it robust, that is able to cope with disturbances.

Finally, as a further contribution, we present an effectivecontroller compression
technique, namely an OBDD-based controller encoding, which allows to reduce the
size of a numerical controller table up to 10% of its originalsize, while preserving
small access times.
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1.3 Related Works

A survey of methods for synthesising controllers is out of scope for this paper, we refer
the interested reader to the following books: [4] for PID-based techniques, [32] for
what concerns the synthesis of robust controllers and [22] for mathematical methods
and in particular Lyapunov-based methods. Finally, the control handbook [31].

Furthermore, here we want to mention some approaches similar to ours.
First, one of the most versatile and widely used technique isdynamic programming,

which is very suitable for the generation of optimal controllers [6, 30]. In [18], we pre-
sented a comparison between model checking and dynamic programming techniques
for the synthesis of optimal controllers. However, differently from our approach that
provides an automatic methodology, the dynamic programming often requires the def-
inition of design functions which have to be chosen case by case. Moreover, it requires
the inversion of the dynamical behaviour of the system whichcan be hard to compute.

Cell mapping, originated by Hsu[26, 24] as a computational technique foranalysing
the global behaviour of nonlinear systems, has been used to generate control tables (see
e.g. [25]). However, since cell mapping requires a global analysis of the system, when
a high precision is required, it is hard to apply.

A widely used approach is the one based onsymbolicmodel checking, (see,
e.g. [46], the Pnueli’s works [3, 2] or the UPPAAL-TIGA tool [5, 47]), which how-
ever differs from ours since we use an explicit approach.

Furthermore, the problem of synthesis of controllers can beviewed as a two-players
game between the controller and its environment. For this approach, see, e.g. [39, 34,
44], where, however, authors consider timed automata [29].

Finally, there is a class of “on the fly” algorithms (see, e.g.[45] or the CIRCA
project [35, 21])

However, to the best of our knowledge, this is the first time that explicit model
checking techniques are successfully applied for the automatic synthesis of controllers
for hybrid systems.

1.4 Summary

The rest of the paper is organised as follows. In Section 2 we provide some background
notions on hybrid systems and define the corresponding control problem. Then, in Sec-
tion 3 we present out controller generation tool, namely CGMurphi, whose algorithms
are detailed in Sections 4,5 and 6. A number of validating case studies are described in
Section 7. Finally, Section 8 concludes the paper.

2 Basic Definitions and Statement of the Problem

In this Section we give some formal definitions required to understand the controller
generation algorithm. The interested reader can refer, e.g., to [33, 43] for further infor-
mation on the theoretical arguments introduced in this section.
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2.1 Discrete Time Hybrid Systems

Roughly speaking, hybrid systems are ensembles of interacting discrete and continuous
systems. The discrete system operates on a discrete state and performs discontinuous
state changes at discrete time points, while the continuoussystem operates on a con-
tinuous state which evolves continuously.

More formally, we have the following definition.

Definition 1 A Discrete Time Hybrid System(DTHS) is a tupleH = (X,Q, U , W , I,
f , p) where:

• X = ×n
i=1[ai, bi], with [ai, bi] a bounded interval of the realsR.

• Q = ×k
i=1[ci, di], with [ci, di] a finite subset of the integersZ.

• U = ×m
i=1[αi, βi], with [αi, βi] a bounded interval of the realsR.

• W = ×r
i=1[γi, µi], with [γi, µi] a finite subset of the integersZ.

• I is a subset ofX ×Q.

• f is a function fromX × Q × U × W to X s.t. for eachq ∈ Q, w ∈ W ,
λxu [f(x, q, u, w)] is a continuous function of(x, u) (whereλ is the abstraction
operator).

• p is a function fromX ×Q× U ×W toQ.

The state space ofH is S = X × Q. A statefor H is a pairs = (x, q) in S, where
x ∈ X andq ∈ Q.

A run for the DTHSH is a (possibly infinite) sequence of states and actions
(x(0), q(0), u(0), w(0)), . . .(x(t), q(t), u(t), w(t)), . . . s.t. for allt we have:

• (x(0), q(0)) ∈ I

• x(t+ 1) = f(x(t), q(t), u(t), w(t))

• q(t+ 1) = p(x(t), q(t), u(t), w(t))

If π = (x(0), q(0), u(0), w(0)), (x(1), q(1), u(1), w(1)), . . . is a run ofH we denote
with π(t) thet-th state element ofπ. That isπ(t) = (x(t), q(t)). Furthermore we write
ϕ(x(t), q(t), u(t), w(t)) for (f(x(t), q(t), u(t)), p(x(t), q(t), w(t))).

A states ∈ X × Q is said to bereachableiff there exist a pathπ and an integert
s.t. s = π(t).

To convey to reader the motivations behind our formalism, wemake the following
observations.

First we observe thatx ∈ X is the vector of thecontinuous components of the state,
q ∈ Q is the vector of thediscrete components of the state, u ∈ U is the vector of the
continuous components of the control actions, andw ∈ W is the vector of thediscrete
components of the control actions. I is the set ofinitial states.
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Moreover, to each discrete stateqi is assigned, via the functionf , a regionXi in
the continuous state spaceX and a dynamics which acts on the regionXi when the
discrete state isqi. Roughly speaking, to every discrete state corresponds amodeof the
system.

2.2 Control Problem for DTHS

In order to model our control problem, we extend the definition of DTHS assuming
that asetpointG ⊆ X × Q 6= ∅ has been specified. In this context, setpoint refers
to the normal condition the controller should bring (or maintain) the plant to. We call
goal states(or goals) the states inG.

Moreover, we can tolerate a givenapproximationin reaching the goal, more pre-
cisely givenǫ > 0, we say that a state (x,q) is anǫ-approximation of the goaliff for
some goal state (xg, qg), |x− xg| < ǫ andq = qg.

Now we are in position to state thecontrol problemfor a given hybrid systemH
with respect to a setpointG and anǫ-approximation of the goal.

Definition 2 A Control Problem(CP) is a triple (H, G, ǫ) where: H = (X, Q, U ,
W , I, f , p) is a DTHS,G is a setpoint andǫ is the tolerated goal approximation. A
solution to a CP is a mapK fromX × Q to U × W s.t. for all (x, q) ∈ I there exist
k ∈ N and a runπ of H s.t.: for all t < k, π(t + 1) = ϕ(π(t),K(π(t))), andπ(k) is
an ǫ-approximation of a goal state inG.

Note that the definition 2 handles the problem of driving a system to the setpoint
G, while it does not explicitly address the problem of keepingthe system inG (sta-
bilisation), which is very common in the control theory. However, stabilisation can be
addressed as well by extending the set of initial statesI with all the states in the neigh-
bourhood ofG (i.e., all the possibleǫ-approximations ofG). Indeed, in this case the
problem solution, devised as described above, will also contain the information needed
to bring back (and keep) the plant to its setpoint when it moves within the region de-
fined byǫ around the setpoint itself.

Since we have no restrictions on the dynamics of the system, the problem of deter-
mining if a state is controllable to the setpoint has no algorithmic solution, even for very
simple (non linear) dynamics [42]. Therefore, we must consider suitable restrictions,
which however should not compromise the usefulness of the approach.

First of all, we assumeeffectivenessof all functions. That is, we assume that (the
characteristic function of the set of) initial states, the DTHS transition relation (i.e.f
andp in Definition 1) as well as any other function can be computed with any degree of
accuracy. Note that, while we need this requirement (which corresponds, e.g., to type-2
computability in [48]) to solve the DTHS control problem in general, it seems likely
that in every specific instance of the problem only a finite precision should be required.
Further requirements on the computability of the transition functions are pointed out
below.

Therefore we only considereffectiveDTHS, i.e. DTHS that satisfy the above ef-
fectiveness condition.
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Second, we assume afinite temporal horizon. That is we require that the setpoint is
reached within a givenmaximum number of control actions. Note that in most practical
applications we always have a maximum time allowed to complete the execution of
system run. Thus this restriction, although theoreticallyquite relevant, has a limited
practical impact. Note that with this restrictions,piecewise linear dynamicsbecomes
decidable [41, 40].

We consider the following control problem.

Definition 3 A Finite Horizon Control Problem(FHCP) is a quadruple (H, G, ǫ, T )
where:

• H = (X, Q, U , W , I, f , p) is an effective DTHS,

• G ⊆ X ×G is a set of goal states,

• ǫ > 0 is the tolerated goal approximation,

• T ∈ N is a temporal horizon.

A solutionto a FHCP is a mapK fromX × Q to U ×W s.t. for all (x, q) ∈ I there
existk ≤ T and a runπ of H s.t.: for all t < k, π(t + 1) = ϕ(π(t),K(π(t))), and
π(k) is anǫ-approximation of a goal state inG.

In the following, we will writeKρ(s) to mean a pathπ starting ats (i.e. π(0) = s)
and s.t. there existsk ≤ T s.t. for all t < k, π(t + 1) = ϕ(π(t),K(π(t))), andπ(k)
is anǫ-approximation of a goal state inG. Moreover, we write|Kρ(s)| to mean thek
above, i.e. the number of steps required to drives to (an ǫ-approximation of) a goal
state.

A more general control problem is obtained when acost functionis defined on the
transitions of the system.

Definition 4 An Optimal Finite Horizon Control Problem(OFHCP) is a 5-tuple (H,
G, ǫ, T , C) where:

• H = (X, Q, U , W , I, f , p), G, ǫ andT are the same as in Def. 3

• C : X × Q × U × W → R
+ is a cost function, s.t. for eachq ∈ Q, w ∈ W ,

λxu [C(x, q, u, w)] is a continuous function of(x, u).

A solutionto an OFHCP is a solutionK for the FHCPP = (H, G, ǫ, T , C) s.t., for
all other solutionsK′ for P, the following holds. For alls ∈ I, considerπ′ = K′

ρ(s)

andπ = Kρ(s), then
∑|Kρ(s)|−1

t=0 C(π(t), π(t+1)) ≤
∑|K′

ρ(s)|−1

t=0 C(π′(t), π′(t+1)).

2.3 Discretisation of DTHS

In order to address the control problem using model checkingtechniques, we need to
extract from the DTHS a Finite State System (FSS) through a suitable discretisation of
the continuous variables.
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Definition 5 LetH = (X,Q, U , W , I, f , p) be a DTHS andd ∈ R
+ be adiscretisation

step. Then adiscretisationD = (Ds, Dc) with stepd of H is a pair of functions
Ds : X → Zn ∩X andDc : U → Zm ∩ U whereZ = {dz|z ∈ Z}. FunctionDs is
defined asDs(x) = y s.t.y ∈ Zn∩X and|x − y| is minimal. FunctionDc is defined
asDc(u) = y s.t.y ∈ Zm ∩ U and |u − y| is minimal.

Moreover, ifδ is the smallest real value such that for allx, |x − Ds(x)| ≤ δ, we
call δ theradiusof the discretisationDs.

Observe that, beingX bounded, the discretised states inX are finite (by an abuse
of language we denote also byDs this set). The same holds for the values of the
discretised control actions (correspondingly, we denote by Dc this set). We use also
the notation̂x (û) to denote elements ofDs (resp.Dc).

Given a discretisationD = (Ds, Dc) and an approximationǫ, the discretisedǫ-
approximations of the goal state(shortly,ǫ-goals) are all theǫ-approximations of the
goal states, whose continuous components are inDs. We shall always require that the
discretisation has been chosen in such a way that the set of discretisedǫ-approximations
of the goal state isnot empty, i.e. the discretisation radius is less than or equal toǫ.

The discretisation step, the temporal horizon and the precision of the approximation
of the goal states are threedesign parametersthat the designer can choose to get the
solution to the OFHCP which is best suited w.r.t. the constraints to be fulfilled.

Now we are in position to associate to our hybrid systemH = (X, Q, U , W , I, f ,
p) a suitablefinite state systemas follows:

Definition 6 Given a discretisationD = (Ds, Dc) and a DTHSH = (X,Q, U , W , I,
f , p), thefinite state system(FSS in the following)FH ≡ (S,A, FT , IS) associated
with H is defined as follows (witĥx = Ds(x), û = Dc(u)):

1. the setS of states ofFH is defined as the set of all(x̂, q) with x̂ ∈ Ds andq ∈ Q;

2. the setA of actions ofFH is defined as the set of all(û, w) with û ∈ Dc and
w ∈ W ;

3. the transition functionFT : S×A −→ S is defined as follows:FT (x̂, q, û, w) =
(x̂′, q′), where:

• x′ = f(x̂, q, û, w),

• q′ = p(x̂, q, û, w);

4. the setIS of the initial states ofFH is defined asIS = {(x̂, q)|(x, q) ∈ I}.

We can now reformulate the control problem above as a problemrelative to the
finite state systemFH:

Definition 7 An Optimal Finite Horizon Finite State Control Problem(OFHFSCP) is
a 5-tuple (FH, G, ǫ, T , C) where:

• FH = (S,A, FT , IS) is the FSS associated with the DTHSH as defined in Def. 6
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• ǫ andT are the same as in Def. 3

• G ⊆ S is a set of goal states

• C : S ×A → R
+ is acost function

A solutionto an OFHFSCP is the minimum-cost one (w.r.t. the cost functionC, as
shown in Def. 4) among all the possible mapsK from S to A s.t. for all (x̂, q) ∈ IS
there existk ≤ T and a runπ ofFH s.t.: for all t < k, π(t+ 1) = FT (π(t),K(π(t))),
andπ(k) is anǫ-approximation of a goal state inG.

In the following sections, we present a general methodologyto solve this problem.
As we will see, our algorithm brings into (an epsilon approximation of) a goal state not
only each initial state, but also all the states which are backward reachable from the
goal in at mostT steps.

3 The CGMurphi Tool

The CGMurphi tool [13] is an extended version of the CMurphi model checker [12].
It is based on an explicit enumeration of the state space, originally developed to verify
protocol-like systems.

ROBUST_CONTROL

(optional)

COMPILE_CONTROL

(optional)

OPTIMAL_CONTROL

Plant

Specification

Plant

Description

(Model)

Optimal Controller

Robust Controller

Generated 

Artifacts

CGMurphi

Tasks

User-Supplied 

Artifacts

Controller C Library

Controller VHDL

Controller

Figure 1: CGMurphi usage pattern.

We added to CMurphi a set of new functionalities that take advantage from the
verifier’s base algorithms and data structures, extending and enhancing them in order
to create a completepress-buttoncontroller generation framework.

In particular, an overall view on the CGMurphi functions andproduced artifacts is
shown in Figure 1. As the reader can see, the only input required by CGMurphi is a
plant description (including the setpoint) derived from its specifications. Then, the tool
is able to automatically
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• Synthesise an optimal numerical controller for the given plant (the
OPTIMAL CONTROL task of Figure 1). The output of this task is a binary en-
coded state-action table.

• Optionally, strengthen the numerical controller by refining the control in selected
areas of the plant state space (theROBUST CONTROL task of Figure 1). The
output of this task is new, possibly larger, state-action table. The state space areas
that are subject to the strengthening are automatically chosen by a probabilistic
analysis process based on a set of user defined parameters.

• Optionally, compile the controller table into a compact OBDD-based representa-
tion and then outputs executable code that implements this representation, for an
easy and quick embedding of the controller in any hardware orsoftware device
(theCOMPILE CONTROL task of Figure 1).

The process is entirely automatic, and required no user further assistance after the
model has been created and fed to the tool together with the controller generation set-
tings and preferences.

In the following, we first describe the CGMurphi input language. Then, we give de-
tails about the algorithms used to implement all of the threetasks listed above, namely,
OPTIMAL CONTROL, ROBUST CONTROL andCOMPILE CONTROL. A final worked
example will then show, step by step, the tool usage from the end-user point of view.

3.1 CGMurphi Input Language

The CGMurphi input consists of the definition of aFSS FP , representing the plantP
to be controlled, and including the definition of the set of states in the setpoint, i.e. the
states that the controller should bring (or maintain) the plant to. Definitions are stored
in a file that we callCGMurphi model.

The plant model is described in CGMurphi using theCGMurphi modelling lan-
guage, which is basically the same as is a high-level programming language for finite-
state asynchronous concurrent systems, which includes many features found in com-
mon high-level programming languages such as Pascal or C, such as has user-defined
data types, procedures and parametrisation of descriptions.

A CGMurphi model consists of

• a set of declarations of constants, types, global variablesand procedures,

• a collection of transitions rules,

• a description of the initial states,

• a set of properties.

The behavioural part of the model is a collection of transition rules. Each transition
rule is a guarded command consisting of a condition (i.e., a boolean expression on
global variables) and an action (i.e., a statement that can modify the global variables
values).

Moreover, the CMurphi modelling language offers two important functionalities
that are essential to cope with complex and hybrid systems:
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• Finite Precision Real Numbers. The typereal(m, n) can be used to repre-
sent real numbers withm digits for the mantissa andn = log10⌊n⌋ + 1 digits
for the exponent. The typereal(m, n) is actually finite, with a cardinality of
2 × 9 × 10m−1 × 2 × 10n = 36 × 10m+n−1. Thus this extension has no im-
pact on synthesis algorithms, but makes it easier to model hybrid systems within
CGMurphi.

• External C/C++ Functions. It is possible to call externally defined C/C++
functions in the modelling language. Therefore we can use the C/C++ code to
model the plant dynamics: this makes possible, for instance, to directly include
(with some arrangement) in the CGMurphi model a simulator for the plant under
analysis, since plant simulators are often available and almost always written in
C/C++. In this way, creating the CGMurphi model for a plant becomes a really
simple process.

Finally, in order to define the setpoint, in CGMurphi we extended the modelling
language above with thesetpoint construct. Such construct has the following syn-
tax:

<setpoint> ::= setpoint [ <string> ] <expr>

where<expr> is a boolean expression that is true in a states if and only if s satisfies
the setpoint property, optionally named with a<string>.

Section 7 contains more examples that show how the CGMurphi input language
can be used to model real systems.

4 Optimal Controller Generation

In this Section we present a model checking based algorithm used by CGMurphi for
the synthesis of optimal numerical controllers.

In particular, we will take advantage from thereachability analysisalgorithms used
by explicit model checkers, and adapt them in order to efficiently compute the con-
troller table. Indeed, model checking starts by computing the exactreachable region
of the system by means of the so called reachability analysis. Such region consists of
all states reachable from theinitial statesby some action sequence, and it has usually
a complex structure, being composed only by a small fractionof the possible states
specified by the state variables.

Reachability analysis can be performed in abackwardor in forward way, starting
from the goals or from the initial states, respectively. We adopt abreadth-firstforward
search algorithm, since this approach is viable also when the dynamics of the system
is difficult to invert, as often happens with hybrid systems.

The overall optimal controller generation algorithm is represented by the
OPTIMAL CONTROL procedure depicted in Figure 2.

In particular, an iterative approachis used to find the best suited discreti-
sation of the given DTHSH: we start with a tentative discretisation cho-
sen as a very coarse quantisation of the variable domain. Then, function
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OPTIMAL_CONTROL

EXPLORE

SYNTHESIZE

VALIDATE

guess_next_

discretization

System dynamics 

(transition graph)

Controller

Discretization

parameters
Plant

Description

Acceptable 

controllability?

Optimal Controller

Figure 2: Structure of the OPTIMALCONTROL Procedure.

guess next discretisation is iteratively used to generate finer discretisation
for the continuous variables by increasingly refining theirquantisation.

The devised discretisationD and the corresponding OFHCP definitionF are
passed to theEXPLORE procedure, which builds the dynamics of the system, and then
theSYNTHESISE procedure is called to create the controllerCTRL.

Both procedures work on the DTHS definition using the full machine precision for
the calculations involving continuous values: the discretisation is only applied to the
reachable states. Moreover, the presented algorithm worksdirectly on an implicit de-
scription of the given DTHS, i.e., it does not require a completestate space generation,
but generates on-the-fly only the reachable states, saving both memory and time.

Finally, theVALIDATE procedure is used to check ifCTRL guarantees a suitable
controllability. This is accomplished by checking that thediscretised trajectories are a
satisfactory approximation of the real ones. A similar iterative approach is advocated
in the well-knowncell mappingapproach [38, 37]. If the validation fails, the whole
process is repeated with a finer discretisation. re obtainedwith finer discretisations.

In the following sections we describe theEXPLORE, SYNTHESISE and
VALIDATE procedures in more detail.

4.1 TheEXPLORE Procedure

TheEXPLORE procedure in Fig. 3 is directly derived from a forward reachability anal-
ysis algorithm. It visits the DTHSH up toT steps, building a representation of the
system dynamics.

More in detail, the procedure uses the following data structures.
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1 EXPLORE(OFHCP F, discretisation D) {
2 let F = (H, G, ǫ, T, C);
3 let H = (X, Q, U, W, I, f, p);
4 states_current_level := 0;
5 foreach s ∈ I {
6 (xs, qs) := D(s); //discretize the state
7 Enqueue(Q_S, (xs, qs));
8 Insert(HT, (xs, qs));
9 states_current_level := states_current_level + 1;

10 if ((xs, qs) is an ǫ-goal) {
11 Enqueue(Q_G, (xs, qs));
12 HT[(xs, qs)].cost := 0;
13 }
14 }
15 current_BFS_level := 1;
16 states_next_level := 0;
17 let FH = (S,A, FT , IS) be defined as in Def. 6;
18 while ((Q_S 6= ∅) ∧ (current_BF_level ≤ T)) {
19 (x, q) := Dequeue(Q_S);
20 foreach (y, r) ∈ {FT (x, q, u, w) | (u,w) ∈ A} {
21 if ((y, r) /∈ HT) {
22 Insert(HT, (y, r));
23 if ((y, r) is an ǫ-goal) {
24 Enqueue(Q_G, (y, r));
25 HT[(y, r)].cost := 0;
26 }
27 else {
28 Enqueue(Q_S, (y, r));
29 states_next_level := states_next_level + 1;
30 }
31 }
32 PT[(y, r)] := PT[(y, r)] ∪ (x, q);
33 }
34 //BFS level calculation
35 states_current_level := states_current_level - 1;
36 if (states_current_level = 0) {
37 states_current_level := states_next_level;
38 states_next_level := 0;
39 current_BFS_level := current_BFS_level + 1;
40 }
41 }
42 }

Figure 3: The EXPLORE Procedure.
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• A Hash TableHT used in order to store already visited states;

• A QueueQ S containing the states to be expanded;

• A Predecessors TablePT containing, for each visited state, a list of its directed
predecessors;

• A QueueQ G where we put theǫ-goal states encountered during the visit;

EXPLORE takes as input an OFHCPF = (H, G, ǫ, T , C) and a discretisationD,
and fills the structuresHT, PT andQ G with the reached states, discretised through
D. To this aim, it performs a BF visit of the DTHS state space, starting from all the
(discretised) initial states.

Namely, the initial states are inserted in the queueQ S (line 7) after being discre-
tised throughD (line 6). As usual in the BF strategy, we expand the discrete state
(x, q) in the front of the queue by computing (line 20) the set of the successor states of
(x, q), i.e. {FT (x, q, u, w)|(u,w) ∈ A}. Note that this is performed on the continuous
dynamics function of the DTHS, exploiting the full machine precision.

Each successor(y, r) of (x, q) that has not been already visited (i.e., is not inHT),
is inserted inHT (line 22).

If (y, r) is a ǫ-goal state, it is also inserted inQ G, with cost set to zero. (line 24.
Otherwise, it is inserted in the BFS queueQ S .

Finally, (x, q) is added to the predecessor list of(y, r) in tablePT. In this way,
for all (x, q) ∈ S which are reachable from a discretisation of an initial OFHCP state
(i.e. from a(xs, qs) s.t. ∃s ∈ I D(s) = (xs, qs)), PT[(x, q)] contains all the states
which may go in(x, q) by means of an action, i.e.(y, r) ∈PT[(x, q)] iff (y, r) =
FT (x, q, u, w) for some(u,w) ∈ A.

4.2 TheSYNTHESISE Procedure

TheSYNTHESISE procedure in Fig. 4 makes a BF visit of the inverted graph resulting
from the FSSFH. To this end,SYNTHESISE uses the information inQ G, HT andPT
prepared byEXPLORE. Namely, we start from theǫ-goal states inQ G and we navigate
each edge backward via the tablePT.

The procedure takes as input the DTHSH, a discretisationD and acost function
C : S × A → R

+ (whereS andA are the discretisation byD of states and actions,
see Def. 6), and returns as output thecontroller tableCTRL, containing (state,action)
pairs.

Of course, if onlytime optimalityis required, then we simply fixC = 1, giving a
unitary cost for all transitions of the system, so that the problem offinding an optimal
controller reduces to select the shortest paths between each state and the goal state.

The BF visit queueQ S is initialised with theǫ-goal states inQ G. Then, in the
generic iteration we first extract a state(x, q) from Q S and, for all predecessors(y, r)
of (x, q) (line 9) we perform the following steps.

First, we pick alocal action among the control actions(u,w) ∈ A such that
FT (y, r, u, w) = (x, q) andC(y, r, u, w) is minimum (lines 10-12).
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1 SYNTHESISE(DTHS H, discretisation D, cost_function C) {
2 let H = (X, Q, U, W, I, f, p);
3 let FH = (S,A, FT , IS) be defined as in Def. 6;
4 CTRL := ∅;
5 Q_S := Q_G; //this erases the previous content of Q
6 while (Q_S 6= ∅) {
7 (x, q) := Dequeue(Q_S);
8 previous_cost := HT[(x, q)].cost; //0 if HT[(x, q)].state is a goal
9 foreach (y, r) ∈ PT[(x, q)] {

10 local_cost := min
(u,w)∈A | FT (y,r,u,w)=(x,q)

C(y, r, u, w);

11 U := {(u,w) ∈ A | FT (y, r, u, w) = (x, q) ∧ C(y, r, u, w) =local_cost};
12 local_action := pick an action in U;
13 if (CTRL[(y, r)] = ∅∨HT[(y, r)].cost > previous_cost + local_cost){
14 CTRL[(y, r)] := local_action;
15 HT[(y, r)].cost := previous_cost + local_cost;
16 Enqueue_in_Order(Q_S, (y, r));
17 } } }
18 return CTRL;
19 }

Figure 4: The SYNTHESISE Procedure.

Then, if either the control action for(y, r) has not been defined yet, or
local action leads to better results than the already computed one (line 13),
CTRL[(y, r)] andHT[(y, r)].cost are properly updated (lines 14 and 15, resp.),
and(y, r) is enqueued inQ S in ascending order w.r.t. costC to be later expanded.
This phase ends when the queueQ S is empty, and the final controller tableCTRL is
returned.

Note that theSYNTHESISE procedure is the same as Dijkstra algorithm except
that the nodes are not enqueued inQ S before the main loop. Namely, nodes (states)
with infinite cost are not enqueued since as soon as a state(y, r) is found to have a finite
cost,(y, r) is enqueued inQ S. Since, in the Dijkstra algorithm, if the queue is left with
states with infinite costs only, no further modifications take place in the shortest path
tree, the algorithm in Figure 4 is indeed the same of Dijsktraalgorithm. This implies
the optimality of the returned controller.

4.3 TheVALIDATE Procedure

Finally, theVALIDATE procedure, shown in Fig. 5, is used to check if the chosen
discretisation has generated a controller that fits the user-defined tolerance.

In particular, we measure such tolerance by means of two important parameters:

• the trajectory control, i.e., the percentage of states belonging to thereal trajec-
tories (generated using the full machine precision) that are controlled to the set-
point by thepseudo-trajectories(generated using the given discretisation). This
parameter is used to estimate thecontrol errorsintroduced by the discretisation.

• the trajectory delay, i.e., the ratio between the length of the pseudo-trajectories
and the one of the corresponding real trajectories. This parameter is used to
estimate howslowerare the pseudo-trajectories due to their approximation.
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1 int LengthPseudoTraj(table CTRL,state (x1, q1), int max_steps,double ε)
2 {
3 steps := 1;
4 while (steps < max_steps) {
5 (u,w) := find_action((x̂1, q1),CTRL);
6 (x̂2, q2) := FT (x̂1, q1, u, w); //using discretisation
7 if ((x̂2, q2) is a ǫ-goal)
8 return steps;
9 steps++;

10 (x̂1, q1) := (x̂2, q2);
11 }
12 return -1;
13 }
14 int LengthRealTraj(table CTRL,state (x1, q1), int max_steps,double ε)
15 {
16 steps := 1;
17 while (steps < max_steps) {
18 (u,w) := find_action((x̂1, q1),CTRL);
19 (x2, q2) := (f(x1, q1, u, w), p(x1, q1, u, w)); //full precision
20 if ((x2, q2) is a ǫ-goal)
21 return steps;
22 steps++;
23 (x1, q1) := (x2, q2);
24 }
25 return -1;
26 }
27 bool VALIDATE(table CTRL,int T,double ε,int tdelay, double tcontrol)
28 {
29 foreach state (x, q) ∈CTRL {
30 t1 := LengthPseudoTraj((x, q),T,ε);
31 if (t1 > -1) {
32 t2 := LengthRealTraj((x, q),t1 + t1∗tdelay,ε);
33 if (t2 > -1)
34 controllable := controllable + 1;
35 else
36 real_out := real_out + 1;
37 } else pseudo_out := pseudo_out + 1;
38 }
39 return ((controllable/(controllable+real_out+
40 pseudo_out))>=tcontrol);
41 }

Figure 5: The VALIDATE Procedure.
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TheVALIDATE procedure takes as input a controller tableCTRL, the design pa-
rametersT (horizon) andε (goal approximation), the required trajectory delay (tdelay)
and control (tcontrol), and returns true if the latter two parameters are satisfied.

For each state inCTRL , VALIDATE determines if the state is controlled both
by the real and discretised trajectories, and the corresponding lengths. These values
are aggregated and finally compared with the user-defined tolerances to determine the
return value of the function.

5 Robust Controller Generation

The controllerCTRL generated by theOPTIMAL CONTROL algorithm in Section 4 is
anoptimalcontroller, but may not berobust.

Given a set of range of disturbances∆ = {δ1, . . . , δn} on state variables and con-
trol variables (commonly due to sensor noise and approximation of continuous vari-
ables), we say that a controller is robust if it is able to copewith ∆-disturbed trajecto-
ries, which may lead to unknown states, althoughcloseto some states in the table.

Since this is an always desirable feature, in many cases the optimal controller
should be refined to make it robust. Obviously, it is impossible to correctly handle
every possible disturbance, thus even a robust controller will be actually unable to
control the plant in some cases. In particular, in this paperwe will apply a statistical
method to select a set of interesting plant states, in order to concentrate the refinement
processaroundthem.

ROBUST_CONTROL

PROBABILISTIC_

ANALYSIS

STENGHTEN

ROBUSTNESS_CHECK

Critical states

Strenghtened

Controller

Controller

Acceptable 

robustness?

Robust Controller

Increase safety threshold

Safey threshold

Figure 6: Structure of the ROBUSTCONTROL Procedure.

The overall robust controller generation algorithm is represented by the
ROBUST CONTROL procedure depicted in Figure 6.

The idea is tostrengthenthe controller by adding new states in order to increase its
robustness degree. However, since the strengthening wouldrequire a huge amount of
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time and memory to be performed, we do not apply this procedure to all the states of
the controller. Indeed, we first apply a probabilistic analysis in order to select the most
important system states. In this way, the controller strengthening is performed only on
these states, ensuring a high degree of robustness with a relatively small growth of the
controller table.

Finally, to check the actual controller robustness, theCHECK ROBUSTNESS pro-
cedure is applied to the final controller. If the robustness degree is not satisfying, we
repeat theSTRENGTHENING algorithm on a larger set of states, obtained from a call
to PROBABILISTIC ANALYSIS with stricter parameters.

In the following sections we describe bothPROBABILISTIC ANALYSIS and
STRENGTHENING procedures in more detail.

5.1 ThePROBABILISTIC ANALYSIS Procedure

In this phase, we want to select themost significant statesof the plant under analy-
sis, in order to focus the strengthening only on these states. Indeed, some states are
rarely reachable by the plant, or may represent ”no way out” states, where any kind of
recovery fails, and thus it is useless to strengthen these states.

Therefore, the selection process is performed using aprobabilistic analysisalgo-
rithm described in the following.

For each controlled states (i.e., inCTRL), we first calculate the probabilitypc(s)
that froms, after any sequence of allowed actions, we are still in a state of the controller.
This gives us a measure of how much the states deriving froms can be handled by our
controller.

In particular, since we actually cannot take into account any possible sequence of
actions, weapproximateour algorithm by considering only sequencesσ of a given
lengthkc. Note that the choice ofkc depends on the required degree of accuracy. In
the following, we supposekc to be fixed.

The selected sequences form a treeT rooted ons. For a given sequenceσ in T , we
define|σ| as the minimum value (if it exists) ofi, with 1 ≤ i ≤ kc, such that the action
σ(i) leads to a state in the controller. We leave|σ| undefined otherwise.

Now letT ∗ be the set of all sequencesσ such that|σ| is defined. The value ofpc(s)
is computed by the following equation:

pc(s) =

{
∑

σ∈T ∗
1

|A||σ| if T ∗ is not empty;

0 otherwise.
(1)

where|A| is the number of actions in the FSS (see Definition 6).
We say that a states is dead if pc(s) < Mc, where thesafety thresholdMc is

a small value, say below 10%. Otherwise,s is live. Live states represent the normal
states of the plant, whereasdeadstates correspond toextremestates, that are practically
uncontrollable in case of disturbances.

Therefore, our idea is to identify the set oflive statesS = {s | pc(s) ≥ Mc} and
concentrate the strengthening process on them.

Figure 7 shows thePROBABILISTIC ANALYSYS algorithm. The probability
pc(s) is calculatedincrementallyusing again a breadth-first visit starting froms. This
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1 PROBABILISTIC_ANALYSIS(controller table CTRL,int kc, double Mc)
2 {
3 foreach s ∈ CTRL {
4 queue Q := s;
5 pc(s) := 0;
6 while ((Q 6= ∅) && (BF Level ≤ kc)) {
7 s := Dequeue(Q);
8 foreach t ∈ FT (s) {
9 if (t ∈ CTRL) pc(s) = pc(s) +

1

nBF Level ;

10 //n is the number of actions
11 else Enqueue(Q,t);
12 } }
13 if (pc(s) < Mc) s is dead;
14 else s is live;
15 } }

Figure 7: The PROBABILISTICANALYSIS Procedure.

time the exploration of each path is stopped afterkc levels or when a state of the con-
troller is reached. Indeed, from Equation (1) we know that the remaining paths do not
contribute to the increment ofpc(s). The exploration also stops onerror states(that
are clearlyunrecoverable), which may or may not exist according to the system under
consideration.

S0

S6S1 S2
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23

1
23

1 0
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S3S1 S2

S6S4 S5

23

100

00

S0 is a live state S0 is a dead state

Figure 8: Examples of probability computation.

Two examples of this computation are shown in Figure 8, wheresolid circles are
the states inCTRL, dashed circles are the states not inCTRL, barred circles are error
states and, for each leaf-node, the contribution topc(s) is indicated. Supposing that
Mc = 20%, in the left case we have thats0 is live sincepc(s0) = 8

9 ≥ Mc, whereas in
the right cases0 is deadsincepc(s0) = 1

9 < Mc.
Once we have built the setS, we can apply the strengthening only on thelive states.

5.2 TheSTRENGTHENING Procedure

As described in the previous Section, thestrengtheningof the controllerCTRL is ap-
plied only on the set oflive statesS. TheSTRENGTHENING algorithm is shown in
Figure 9.
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1 STRENGTHENING(controller table CTRL, safe states S, int ks, double Ml,
double Mh)

2 {
3 foreach s ∈ S {
4 s1, . . . , sk := rand_dist1(s),. . .,rand_distk(s);
5 foreach sj ∈ {s1, . . . , sk} {
6 queue Q := sj;
7 α := NULL; pc(α) := 0;
8 while ((Q 6= ∅) && (BF Level ≤ ks)) {
9 s := Dequeue(Q);

10 foreach t ∈ FT (s) {
11 if (t ∈ CTRL) {
12 if (pc(t) ≥ Ml) {
13 add path from sj to t in CTRL; break;
14 } else if (pc(t) ≥ pc(α)) {
15 α := t; pc(α) := pc(t);
16 }
17 } else Enqueue(Q,t);
18 } }
19 if (pc(α) ≥ Mh)
20 add path from sj to α in CTRL;
21 else sj is dead;
22 } } }

Figure 9: The STRENGTHENING Procedure.

In particular, to ensure the robustness of the controller, we explore a larger number
of states obtained byrandomly perturbingthe states inS. Such random changes simu-
late the possible control errors and state disturbances that may happen in the real plant
dynamics but cannot be described by the plant model.

That is, for each states ∈ S we apply a set of small random changes and obtain a
set of new states which, generally speaking, are not in the controller. Then, from each
new states′, we start a breadth-first visit of the plant state space, stopping it after a
given numberks of levels or when we find a states′′ such thatpc(s′′) ≥ Ml, that is a
sufficiently safecontrolled state. Note that, in a sense, here we use the safe states of the
controller asan extended setpoint. Finally, letN(s′) be the set of visited states during
this visit and lett be a state inS ∩ N(s′) such that∀t′ ∈ S ∩ N(s′) : pc(t) ≥ pc(t

′)
. If pc(t) > Mh, the path froms′ to t is stored inCTRL, otherwise we declares′ dead
(see Section 5.1).

Note that, again, the choice of the constantsks,Ml andMh depends on the required
controller accuracy. In particular,Ml is theminimum probability valuethat we accept
to consider a statenear to the controller andMh themaximum probability valuethat
we considertoo lowto for state to besafe. Obviously we require thatMh < Ml.

After some iterations of this strengthening process, we have that the final controller
CTRL is able to driveP from any reasonable system state to thebestnear state of the
optimal controller and, from there, reach a goal. That is,CTRL has been augmented
with new(state, action) pairs in order to deal with a larger number of possible plant
states. This makes itrobustwithout affecting too much its optimality.

Note that both the probabilistic analysis and the strengthening algorithms are highly
parallelisable. Indeed, the controller states can be partitioned in several subsets and
processed simultaneously by different processes (possibly on different machines).
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5.3 TheROBUSTNESS Test

Finally, in order to check the robustness of the final controller, one can apply the fol-
lowing robustness test:

1. consider, for each live state in the controller, a trajectory starting from it;

2. for each states occurring in a given trajectory, apply a random disturbanceon the
state variables (within a user-defined range of possible disturbances), generating
a new statesp;

3. apply tosp the rule associated to the controller states′ that is nearest tosp.

A trajectory isrobustif, applying the disturbances above, it eventually reachesthe
setpoint. Using this test, it is possible to iterate the strengthening process until the
required robustness degree for the controller is reached.

6 Controller Compilation

Embedding and querying the obtained numerical controller within a small hardware or
software device is also an issue that may be addressed using CGMurphi.

Indeed, the simplistic solution of embedding the controller table together with a
lookup procedure in the target device is realistic only for very small controllers, e.g.,
with a size that does not exceed a megabyte. Also in this case,saving some space may
be a valuable result.

To this aim, CGMurphi is able to encode the controller table using a representation
based on Ordered Binary Decision Diagrams [11]. As we will see, this representation
is extremely compact, if compared with the original table, and easy to translate in
artifacts, such as VHDL architectures or C libraries, that are directly embeddable in
most of the hardware/software systems.

This phase is called controller compilation and its overallalgorithm is represented
by theCOMPILE CONTROL procedure depicted in Figure 10.

Here, the numerical controller table (note that this phase could be applied onany
numerical controller table that is written in the CGMurphi binary format) is fed to
theCOMPRESS procedure, which complies it in a OBDD that compactly represents
the state-action binary relation encoded in the table. Then, the decision diagram is
manipulated by theSPLIT procedure to obtain a set of OBDDs that encode state-
action-bit relations, i.e., binary functions that return asingle bit of the action associated
to the given state. Finally, the state-action-bit relations can be rewritten as a set of C
functions or as a VHDL architecture, ready to be embedded in asoftware or hardware
project, respectively.

6.1 TheCOMPRESS Procedure

OBDDs are directed acyclic graphs that represent boolean functions in a canonical
form. It is possible to reduce dramatically the size of an OBDD representation by
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Figure 10: Structure of the COMPILECONTROL Procedure.

means of the elimination of: duplicate terminals nodes, duplicate nonterminals nodes
and redundant tests.

A useful way to see BDDs, that will be used in this paper, is that they encode
the compressed representation of a relation. However, unlike other compression tech-
niques, the actual operations on BDDs are performeddirectly on that compressed rep-
resentation, i.e. without decompression.

On the other hand, a controller table containing a set of (state,action) pairs rep-
resents a relationR = {(s, a)|a is the action associated tos in the controller table}
between states and actions. Since BDDs encode formulas, it may be useful to represent
R through its characteristic functionCR defined as follows:

CR(s, a) =

{

T if (s, a) ∈ R
F otherwise

Now, to write a definition ofCR as a boolean formula, we first have to represent its
arguments, i.e., states and actions, in terms of logic variables. To this aim, we expand
them to their binary memory representation.

Let suppose that states aren-bit values and actions arem-bit values. We writes[i]
anda[i] to denote theith bit of states and actiona,respectively.

Let xi, i = 1 . . . n andyj , j = 1 . . .m ben + m boolean variables. A states is
then be represented by the formula

fs(x1, . . . , xn) =
∧

i=1...n

li whereli =

{

xi if s[i] = 1
x̄i if s[i] = 0

Eachfs is a boolean formula inn variables that is true if and only if its variables are
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assigned with the bits ofs (denoting, as usual, the boolean true with1 and the boolean
false with0). In the same way, an actiona corresponds to the formula

fa(y1, . . . , ym) =
∧

i=1...m

li whereli =

{

yi if a[i] = 1
ȳi if a[i] = 0

Therefore, the controller characteristic functionCR can be encoded by the boolean
formula

fR(x1, . . . , xn, y1, . . . , ym) =
∨

(s,a)∈R

(fs ∧ fa)

fR is a boolean formula inn + m variables that is true if and only if the variable
assignment corresponds to the encoding of a(s, a) pair for whichR(s, a) holds.

For example, assume that the controller table contains the following 2-bit states
s = 00, s′ = 01, s′′ = 10, with the following associated 1-bit actionsu = 0, u′ =
0, u′′ = 1. Then the formula for the characteristic relation would befR = x̄1 · x̄2 · ȳ1+
x̄1 · x2 · ȳ1 + x1 · x̄2 · y1.

Moreover, we have to fix some BDD encoding parameters, namelythe variable
ordering in the boolean formulas and the dynamic reorderingmethod used by the BDD
package.

Indeed, the BDD structure and therefore the compression ratio can be influenced
by the original ordering of the variables in the boolean formulas presented to the BDD
package. In particular, we recall that the variables in our BDDs are the state bit vari-
ables, namelyxi, i = 1 . . . n, and the action bit variables,yi, i = 1 . . .m. Thus, we
may consider the variable orderings arising from all the possible combinations of the
following conditions:

• the state bit variables and the action bit variables can be ordered with different
endianness, that is from the most significant bit to the leastor vice-versa;

• the state bit variables can be placed before the action bit variables, after them or
interleaved.

Namely, we can write the functionfR with any of the ten variable orderings
O1 . . . O10 shown in Table 1. Note that inO9 andO10 we assumen > m.

Moreover, variables can be dynamically reordered by the BDDpackage during
the construction of the final BDD. In our experiments, we usedthe fourteen dynamic
reordering methods offered by the CUDD package.

TheCOMPRESS algorithm, whose pseudocode is shown in Figure 11, implements
the technique described above.

After reading the number of bits in the controller states andactions, the
BDD encoding procedure creates the corresponding set of boolean variablesxi and
yi, respectively.

Then, for each entry of the controller table, a new BDDE is created as the ap-
propriate conjunction of the state and action variables. Inparticular, the code checks
every bit in the state and adds to the BDDfs a conjunction with the corresponding
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O1 x1 · · ·xny1 · · · ym

O2 x1 · · ·xnym · · · y1

O3 xn · · ·x1y1 · · · ym

O4 xn · · ·x1ym · · · y1

O5 y1 · · · ymx1 · · ·xn

O6 y1 · · · ymxn · · ·x1

O7 ym · · · y1x1 · · ·xn

O8 ym · · · y1xn · · ·x1

O9 x1y1x2y2 · · ·xmymxm+1 · · ·xn

O10 xn, ymxn−1ym−1 · · ·xm−ny1xm−n−1 · · ·x1

Table 1: Possible initial variable orderings

BDD COMPRESS(controller_table CTRL) {
read number N of entries in CTRL;
read number n of bits in each state of CTRL;
read number m of bits in each action of CTRL;
foreach j = 1 . . . n create boolean variable xj;
foreach j = 1 . . .m create boolean variable yj;
BDD fR;
foreach i = 1 . . . N {
BDD E, fs, fa;
foreach j = 1 . . . n //encode state bits
if (bit(CTRL[i].state,j) == 1) fs = fs ∧ xj;
else fs = fs ∧ x̄j;

foreach j = 1 . . .m //encode action bits
if (bit(CTRL[i].action,j) == 1) fa = fa ∧ yj;
else fa = fa ∧ ȳj;

E = fs ∧ fa;
fR = fR ∨ E; //disjunction of entries

}
return fR;}

Figure 11: The COMPRESS Procedure.
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variable, in its positive or negated form, based on the valueof the bit. The process is
then repeated for the action bits in the BDDfa, and finallyE is obtained asfs ∧ fa.

The BDDE is then added to the final BDDfR using a disjunction. When all the
controller entries have been processed,BDD encoding returnsfR.

As we can see, the algorithm is actually very simple, since all the BDD manipula-
tion is done by the external BDD package. In particular, our implementation uses the
CUDD [15] BDD manipulation package. Such package provides alarge set of oper-
ations on BDDs and many variable dynamic reordering methods, which are crucial to
gain the highest possible compression factor.

Note that, to ensure the correctness of our approach, we alsodeveloped a parallel-
query algorithm that tests for correctness and completeness the BDD-encoded con-
troller fR with respect to the original numerical controllerCTRL. This procedure sim-
ply compares the results obtained by querying the uncompressed and the compressed
controller with all the states in the controller table.

6.2 TheSPLIT Procedure

The BDD generated by theCOMPRESS procedure is compact, has a relatively slow
access time. Indeed, to find the actiona associated to a given states, we first need
to fix the BDD variablesx1, . . . , xn to the value of the corresponding state bits (i.e.,
perform a BDDrestriction), and then find the unique satisfying assignmenty1, . . . , yn
for the obtained decision diagram, that corresponds to the (binary representation of
the) actiona. Both the BDD operations above are nontrivial and require the complete
support of a BDD package like CUDD to be easily performed.

Therefore, to make the compressed controller standalone, we have to further sim-
plify its BDD encoding. To this aim, split the BDDfR i n a set of BDDsfR

i,
i ∈ [1 . . .m], one for each bit of the action, defined as follows:

fR
i(x1, . . . , xn) =

∃y1, . . . , yi−1, yi+1, . . . , ym
fR(x1, . . . , xn, y1, . . . , yi−1, 1, yi+1, . . . , ym)

In other words,fR
i, if applied to the logical encoding of a particular state

(x1, . . . , xn) is true if and only if there is an action in the controller table, associ-
ated with such state, which has an 1 in its i-th bit. However, since we know that such
an action, if exists, is unique, we can reformulate the definition of fR

i as follows:
“fR

i(x1, . . . , xn) is true if and only if the i-th bit of the action associated with the state
represented byx1, . . . , xn is 1”.

Thus, the new set of BDDs can be used to get the action associated to a given state
by simply calculating their value with respect to the variable assignment corresponding
to the state binary encoding. This operation is extremely easy and fast to implement
and does not need any advanced BDD manipulation algorithm.

6.3 TheGENERATE Procedures

Due to their simplicity, the BDDs above can be easily rewritten as boolean expressions
in any programming language. Indeed, the translation process is very straightforward
and requires only a visit of the OBDD graph.
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Let n be a node of the OBDD. If it is a constant (true or false) node, the translation
is trivial. Otherwise, letV (n) be the logic variable associated to the node, and letT (n)
andE(n) be the two children ofn for V (n) = true andV (n) = false, respectively.
We can define the functionCT of n as follows:

CT (n) =























n = true constant true
n = false constant false

otherwise
IF (V (n))
THEN CT (T (n))
ELSE CT (E(n))

where we use the common IF-THEN-ELSE construct to encode theOBDD structure.
Such construct is indeed present in almost any programming language. Moreover, note
that the expression obtained through this simple translation does not need any further
simplification, since all the possible reductions to the underlying decision tree have
been already done by the OBDD package.

In particular, we can translate the OBDD in a set of C source files containing
functions likechar get_action_bit_i(char* state), generated through the trans-
lation process above applied to the root node of the OBDDsfR

i, a main func-
tion char *control(char* state), which collects the results of the calls to each
get_action_bit_i and returns the complete action associated to the given state. Note
that both actions and states are treated as generic byte arrays.

This translation is linear in terms of the required space, and the resulting repre-
sentation can be easily embedded in a (small) hardware device resulting in good time
performances.

Actually, the effective implementation of this encoding isoptimised and, in par-
ticular, it looks for common sub-diagrams in order to avoid recursive calls. Thus, for
example, from the OBDD representingx XOR y XOR z we obtain the following
code:

tmp1 = y ? z : !z;
tmp2 = x ? tmp1 : !tmp1;
result = tmp2;

Moreover, internally the representation can be further optimized and restructured
to accommodate the C compiler limitations: for example, thefunctions are split in sub-
functions (possibly included in different source files) if the contained logical expression
exceeds the compiler stack. To this aim, in our implementation the GCC [20] compiler,
version 3.4.4, has been used as a reference.

Similarly to the C translation, we can translate the compressed controller table in a
VHDL definition. We start by defining the whole controller (or, better, its characteristic
function) as a module through anentitydefinition as the following:

entity control is
port (
state : in bit_vector (n downto 0 )
action : out bit_vector (m downto 0 )
)

end control;
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The module has a set of input lines, representing the state bits, and a corresponding set
of output lines, composing the action bits.

Then, we give the behavioral description of the actual circuits that compute the
module outputs. Action bits are computed by a separateprocesses, that are executed in
parallel in anarchitecture, as defined in the following:

architecture controller of control is
begin
process (state)
action(0) <= code for the first bit
end process
. . .

process (state)
action(m) <= code for the m-th bit
end process

end controller

The actual code that computes the value of each bit and assigns it to the correspond-
ing output line is the same of the C translation, since VHDL supports the IF-THEN-
ELSE statements.

7 Case Studies and Experimentation

To show the effectiveness of our methodology and the usability of our tool, in this
section we present the experimental results related to three case studies. Namely, we
first consider the following case studies.

• the inverted pendulum on a cartproblem shows a variant of the inverted pendu-
lum problem which presents an highly nonlinear dynamics;

• the truck and trailer obstacles avoidanceproblem shows the ability of our tech-
nique to deal with very complex hybrid problems.

• finally, the turbogas controlproblem (that is only summarised in this paper)
shows a case where the huge system state space would be impossible to analyse
with other tools based on explicit state space generation.

7.1 The Inverted Pendulum on a Cart Problem

As a first example, we consider the inverted pendulum on a cartproblem (Fig. 12),
according to the formulation presented by Junge and Osinga in [27].

7.1.1 Problem Formulation

The system consists of a planar inverted pendulum on a cart that moves under an ap-
plied horizontal forceu, constituting the control. The positionx1 of the pendulum is
measured relative to the position of the cart as the offset angle from the vertical upright
position. The motion of the pendulum is modelled by the following equations:
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Figure 12: Inverted Pendulum on a Cart.
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where the parameters are as in [27], i.e. the mass of the cart isM = 8kg, the mass
of the pendulum inm = 2kg, the distance between the center of mass and the pivot
is l = 0.5, the mass ratio ismr = m/(m + M), and the gravitational constant is
g = 9, 8m/s2.
The instantaneous cost isq(x, u) = 1

2
(0.1x2

1 + 0.05x2
2 + 0.01u2).

7.1.2 CGMurphi Model Description

Now, we can start to build our CGMurphi model by defining the state of the system,
which is represented by the set of thestate variables. As shown in Fig. 13, CGMurphi
allows one to define the typereal(m,n) in order to represent real numbers withm
digits for the mantissa and̄n = log10⌊n⌋+ 1 digits for the exponent.

type real_type : real(4,9);
var x1: real_type; --pendulum angle

x2: real_type; --angular velocity

Figure 13: CGMurphi state definition for the Inverted Pendulum on a Cart.

Note that, since CGMuphi is not able to deal with differential equations such as
the ones describing the pendulum motion shown in the previous section, to create the
model we discretised the continuous dynamics and we used discrete time steps and step
functions for the state values. In particular, we approximatedx1 to 0.01, x2 to 0.1 and
t to 0.1. These approximations were experimentally validated as adequate to provide
valid solutions for the original problem.
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Region of Interest.

As second step, we have to define the region of interest for thecontinuous variables.
The boundaries are imposed by physical, theoretical, and/or design constraints.

For instance, when dealing with angles, as in the inverted pendulum case, a typical
range would be[−π/2, π/2] rad. For the angular velocity, instead, the boundary is
directed defined by the safety constraint of the problem, so that the range is[−8, 8]
rad/sec.

Finally, physical properties of the control device define the range of the control
inputs. In this case, as functiong suggests, we can assumeu ∈ [−0.7, 0.7].

Thus, we can add to the model the upper bounds for the state variables making use
of constants and data types as shown in Fig. 14.

const
MIN_X1: -4; MAX_X1 : 4;
MIN_X2 : -8; MAX_X2 : 8;
MIN_FORCE: -0.7; MAX_FORCE: 0.7; Step_Force: 0.1;
TOLL_X1 : 0.04; TOLL_X2 : 0.3;
TIME : 0.1;

type
real_type: real(4,9);
force_type: MIN_FORCE..MAX_FORCE;
interval_force : 0..((MAX_FORCE-MIN_FORCE)/Step_Force);
x1_type : -4..4; x2_type : -8..8;

Figure 14: CGMurphi user-defined data types for the InvertedPendulum on a Cart.

Setpoint and Guarded Transition Rules.

As final step, we have to define the Setpoint and the Guarded Transition Rules.
For the inverted pendulum problem, the setpoint is the set ofstates near the upright

equilibrium position (x1 = 0, x2 = 0). So we extend our model with the setpoint
definition as shown in Fig. 15.

function Equilibrium(x1:real_type; x2:real_type) : boolean;
begin

return (x1 <= 0.0 + TOLL_x1 & x1 >= 0.0 - TOLL_x1 &
x2 <= 0.0 + TOLL_x2 & x2 >= 0.0 - TOLL_x2);

end;

setpoint "Upright Equilibrium" (Equilibrium(x1, x2));

Figure 15: CGMurphi setpoint definition for the Inverted Pendulum on a Cart.

Finally, we have to define theguarded transition rule, that is the core of our model,
since it regulates the evolution of the system. We take from step 2 we have the condition
for which the transition can take place. Namely, given a state s, we are interested in
the successor states ofs only if s is within the region of interest ands is not a goal. In
this case, the set of successor states ofs is computed by applying the transition rulefor
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eachcontrol input we are considering, this is done by using theruleset construct,
as shown in Fig. 16.

function InRange(x1:real_type; x2:real_type) : boolean;
begin

return (x1 <= MAX_x1 & x1 >= MIN_x1 &
x2 <= MAX_x2 & x2 >= MIN_x2);

end;
ruleset f : interval_force do
rule "Transition" (!Equilibrium(x1, x2)) ==>
var
tmp_x1 : extensive_type; tmp_x2 : extensive_type;
tmp_force : force_type;

begin
tmp_force := MIN_FORCE + (f*Step_Force);
tmp_x1 := next_x1(x1, x2, TIME);
tmp_x2 := next_x2(x1, x2, tmp_force, TIME);
if InRange(tmp_x1, tmp_x2) then
x1 := tmp_x1;
x2 := tmp_x2;

endif;
end;

end;
end;

Figure 16: CGMurphi transition rule for the Inverted Pendulum on a Cart.

Model Compilation.

Once the model has been defined, we can start the controller synthesis. First, we
have to compile the CGMurphi model through themu compiler which takes as in-
put the filemodel name.m containing the model description. This generates a file
model name.C, containing the C++ code implementing the body of rules, start states,
setpoint, functions and procedures, plus other stuffs.

Note that the option--ctrl enables the model compilation for controller gener-
ation, while without parameters it will be performed a verification (this mode can be
used to verify the generated controller).

As final step, we have to compile the filemodel name.C with the standard C++
compiler and launch the executablemodel name.C.o. In this step, the user can
specify the amount of memory for the hash table (and thus determining the maximum
number of states which can be visited) and the amount of memory for the controller
table, that is the maximum number of controllable states. Furthermore, it is possible
to fix the maximum level of bfs to be explored (this option is used to set a finite time
horizon).

7.1.3 Optimal Controller Generation

To apply our approach, we used theOPTIMAL CONTROL procedure of Fig. 2 to find a
suitable discretisation of this DTHS and compute the corresponding controller. We re-
quire (at least) a trajectory control of 98% and a trajectorydelay of 5%. Table 2 shows
some different discretisation tried and the correspondingvalidation results, where the
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columns show the main evaluation parameters described in Section 4.3. The chosen
discretisation approximates the values ofx1 andx2 to 1/32 (radians) and5/128 (radi-
ans per second), respectively. With this discretisation applied, the problem state space
contains385× 501 = 192, 885 states and17 control actions, thus a total of3, 279, 045
transitions.

Discretisation Uncontrolled Discretised Trajectories Real Trajectories Traj. control Traj. delay
x1 x2 States out of horizon out of delay

1/16 5/64 39,363 0 39,363 74% 5%
1/32 5/128 3,476 0 3,476 98% 5%

Table 2: Discretisation of the Inverted Pendulum on a Cart

=========================================================================
EXPLORE
Progress Report:
1000 states explored in 0.14s, with 894 states in the queue
1798 predecessors. 0 goal states reached, current level: 3.
....

Final Report:
192885 states explored in 240.65s.
2206920 predecessors. 63 goal states reached.

========================================================================
SYNTHESISE
Final Report:
151394 controlled states

========================================================================

Figure 17: CGMurphi execution.

The results of the synthesis are reported in Table 3. The corresponding execution
trace is shown in Figure 17.

States Transitions CTRL Rules Time (sec.) CTRL Size
192885 3,277,974 151,394 241 1,478 Kb

Table 3: Controller Synthesis for the Inverted Pendulum on aCart

Fig. 18 shows an example of how the controller drives the pendulum to the upright
equilibrium position.

7.1.4 Robust Controller Generation

Due to some structural properties of the inverted pendulum on a cart problem, robust-
ness can be achieved in this controller by simply using interpolation. In other words,
when the controller is presented with a state that is not in the controller table, it should
simply choose the nearest states in the table and use them to interpolate the corre-
sponding action. For this reason, we instructed CGMurphi toskip the robust controller
generation phase and proceed directly with the compilationof the optimal controller.
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Figure 18: Inverted Pendulum on a Cart trajectory with initial conditionx = [3.1, 0.1]
(x1(——),x2(−−−) versus time).

7.1.5 Controller Compilation

Table 4 shows the compression results for the optimal controller, both using LZ on the
binary controller table and using the CGMurphiCOMPRESS procedure.

Normal LZ BDD
Entries 151394
Size 1,478 Kb 90 Kb (6.1%) 215 Kb (14.6%)
Time 3 ms 206 ms 1 ms

Table 4: Inverted Pendulum on a Cart controller compressionresults

We see that on a small controller the BDD compression has a lower compression
ratio than LZ, but always better access times (1ms vs. 206ms), since it does not require
any decompression to read the table entries.

7.2 The Truck and Trailer Obstacles Avoidance Problem

The goal of the controller is to back a truck with a trailer up to a specified parking place
starting from any initial position in the parking lot. Moreover, the parking lot contains
some obstacles, which have to be avoided by the truck while maneuvering to reach
the parking place. The obstacles position and geometry are given in a tabular way, i.e.
each obstacle is a composition of bidimensional figures defined through the position of
their vertexes relative to the parking lot origin. This is a reasonable representation that
could be automatically generated, e.g. by analysing an image of the parking lot. We
also disallowcorrective maneuvers, that is the truck cannot move forward tobacktrack
from an erroneous move.
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In this setting, finding a suitable maneuver to reach the goalfrom any starting
position is a hard task. On the other hand, as pointed out in the Introduction, finding
anoptimalmaneuver is averycomplex problem, that cannot be modelled and resolved
using common mathematical or programming strategies.

Moreover, note that the states of this system contain both continuous variables (e.g.,
the truck position) and discrete ones (e.g., the boolean variable that indicates if the truck
has hit an obstacle). In such ahybrid systeminterpolation techniques cannot be use to
obtain a robust controller.

In the following, after giving more details about the truck and trailer model, we
show the results obtained by using the CGMurphi tool to synthesise an optimal and
robust numerical controller for this problem.

7.2.1 Problem Formulation

θ
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θ
c

u

(x, y)

x

y

·

·
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·

·
·
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·

·

Figure 19: Truck and Trailer System Description.

Our model of the truck and trailer is based on the set of equations presented in
[36]. Moreover, in our setting theparking regionis an open bounded region ofR2,
delimited by a set of obstacles. We callΓ the parking region. The system has four state
variables relative to its position inΓ: the coordinates of the center rear of the trailer
(x, y ∈ [0, 50]), the angle of the trailer w.r.t. thex-axis (θS ∈ [−90◦, 270◦]) and the
angle of the cab w.r.t thex-axis(θC ∈ [−90◦, 270◦]). Moreover the system has astatus
variableq, which has the following possible values:normal, when the truck lies inΓ
and the jackknife adjustment must be not applied,jackknife when the truck lies inΓ
and the jackknife adjustment must be applied,stop when the truck is parked and then
it must not move anymore,forbidden if the truck is outsideΓ or if it hits an obstacle.

The dynamics for the truck and trailer is shown in Figure 20 asan hybrid automa-
ton [23]. Each state of the automaton represents a mode of theDTHS (i.e. a value for
q). When no action is described, it is assumed that the plant does not change its state.

We assume that the truck moves backward with constant speed of 2m/s, so the only
control variable is the steering angleu ∈ [−70◦, 70◦]. We also allowu to take values
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Figure 20: Truck and Trailer Hybrid Automaton.

outside this range to mean that the truck is parked and it mustnot move anymore.
Figure 19 shows a schematic view of the truck and trailer system with its state and
control variables. We single out ten points on the truck and trailer border (displayed in
the Figure 19 by bold points) asrepresentativeof the truck and trailer position.

If the values of the state variables at timet areq[t], x[t], y[t], θS [t] andθC [t], and
the steering angle isu, then the new values of state variables at timet+1 are determined
by the following equations:

x[t + 1] =

{

x[t] − B ∗ cos(θS [t]) if q[t] ∈ {normal, jackknife}
x[t] otherwise

y[t + 1] =

{

y[t] − B ∗ sin(θS [t]) if q[t] ∈ {normal, jackknife}
y[t] otherwise

θS [t + 1] =

{

θS [t] − arcsin
(

A∗sin(θC [t]−θS [t])

LS

)

if q[t] ∈ {normal, jackknife}

θS [t] otherwise

θC [t + 1] =















θC [t] + arcsin
(

r∗sin(u)
LS+LC

)

if q[t] = normal

J
(

θC [t] + arcsin
(

r∗sin(u)
LS+LC

))

if q[t] = jackknife

θC [t] otherwise

q[t + 1] =



























normal if γ(x[t], y[t], θS [t], θC [t]) ∧ ¬j(θS [t], θC [t])∧
∧u ∈ [−70, 70] ∧ q[t] ∈ {normal, stop}

jackknife if γ(x[t], y[t], θS [t], θC [t]) ∧ j(θS [t], θC [t])∧
∧u ∈ [−70, 70] ∧ q[t] 6= forbidden

stop if u /∈ [−70, 70] ∧ q[t] ∈ {stop, normal}
forbidden otherwise

whereA = r ∗ cos(u), B = A ∗ cos(θC [t] − θS [t]), r = 1 is the truck movement
length per time step,LS = 4 andLC = 2 are the length of the trailer and cab, re-
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spectively (all the measures are in meters),γ(x[t], y[t], θS [t], θC [t]) returns true iff the
truck-and-trailer system is inΓ, j(θS [t], θC [t]) returns true iff|θS [t]−θC [t]| ≤ 90◦ and
J(θC) computes the correct value forθC when the current position does not respect the
jackknife constraint.

7.2.2 CGMurphi Model Description

In the CGMurphi model we use real values to represent the state variablesx andy,
whilst for the angle values (i.e.,θS , θC andu) it is sufficient, w.r.t. the system dimen-
sions, to use integer values. Fig. 21 shows the description of the data types and the
state in CGMurphi.

const MIN_ANGLE:-90; MAX_ANGLE:270;
SP_X:10; SP_Y:0; TOLL_X:1; TOLL_Y:1;
SP_THETA_S:90; TOLL_THETA_S:5;
MIN_U:-70; MAX_U:70; STEP_U: 5;
...

type angle_type : MIN_ANGLE..MAX_ANGLE;
real_type : real(5,99);
interval_u : 0..((MAX_u-MIN_u)/STEP_u);
...

var pos_x : real_type;
pos_y : real_type;
theta_s : angle_type;
theta_c : angle_type;

Figure 21: Truck and Trailer State within the CGMurphi Model.

Moreover, we define sometoleranceconstants to set up a range of admissible final
positions and angles for the center rear of the trailer. These tolerances are used to define
the CGMurphi setpoint, as shown in Fig. 22.

setpoint "Parked"
(pos_x <= SP_X + TOLL_X & pos_x >= SP_X - TOLL_X &
pos_y <= SP_Y + TOLL_Y & pos_y >= SP_Y - TOLL_Y &
angle>=SP_THETA_S-TOLL_THETA_S &
angle<=SP_THETA_S+TOLL_THETA_S );

Figure 22: Setpoint for the Truck and Trailer within the CGMurphi Model.

Fig. 23 shows the main rule of the model. This rule (by means ofthe
ruleset construct) computesall the next positions of the truck by considering
all the defined control actionsu (i.e. the possible maneuvers). The computa-
tion is performed by the external C functionsnext [x,y,theta s,theta c] and
jackknife(tmp theta s,tmp theta c). In this way the description of the
system dynamics is directly embedded in the external C library.

To embed the obstacles in the model, we approximate them through their bounding
rectangles (or rectangle compositions). Then we consider the representativepoints
of the truck-trailer position and, each time a new truck position is computed, we use
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ruleset u : interval_u do
rule (!Parked(pos_x, pos_y, theta_s)) ==>
var tmp_x:real_type; tmp_y:real_type;

tmp_theta_s:angle_type; tmp_theta_c:angle_type;
tmp_u:u_type;

begin
tmp_u:=MIN_u + (u*STEP_u);
tmp_x:=next_x(pos_x, theta_c, theta_s, tmp_u, R);
tmp_y:=next_y(pos_y, theta_c, theta_s, tmp_u, R);

tmp_theta_s:=next_theta_s(theta_s,theta_c,tmp_u,R,L_S);
tmp_theta_c:=next_theta_c(theta_c,tmp_u,R,L_S,L_C);
tmp_theta_c:=jackknife(tmp_theta_s,tmp_theta_c);

if (!isForbidden(tmp_x,tmp_y,tmp_theta_s,tmp_theta_c,
M,L_S,L_C,MIN_X,MAX_X,MIN_Y,MAX_Y))

then
pos_x := tmp_x;
pos_y := tmp_y;
theta_c := tmp_theta_c;
theta_s := tmp_theta_s;

endif;
end;

end;

Figure 23: Transition Rule for the Truck and Trailer within the CGMurphi Model.

the functionisForbidden() to check if any of these points has hit the parking
lot obstacles or borders. Therefore, our controller synthesis algorithm considers only
feasible maneuvers to the goal state.

Moreover, in order to obtain a morerobustcontroller we also considered the ma-
neuvering errors due to the truck-trailer complex dynamic properties (e.g., friction,
brakes response time, etc.) that cannot be easily embedded in the mathematic model.
We used such errors to draw asecurityborder around each obstacle and used these
augmented obstacles in the collision check described above.

To estimate maximum maneuvering error we applied aMonte Carlo’s methodde-
scribed as follows. We consider a large set of valid parking lot positionsS = {sk|1 ≤
k ≤ 500, 000}. Given a positionsk ∈ S, (1) we apply a random maneuvermk ob-
taining the new position̄sk. Then (2) we randomly perturbsk generating the position
spk and apply the same maneuvermk on spk obtaining the position̄spk. Finally, (3) we
compute the distance of the selected truck pointsPi between the positionsspk ands̄pk.
This process is repeated 200 times for each position inS, thus analysing 100 millions
of perturbations. The security border size is the highest distance measured for a point
in the step (3). We found out that this distance is 0.98m.

7.2.3 Optimal Controller Generation

We tested our methodology using several obstacles topologies. As an example, we
consider the map shown in Figure 24, where the black shapes represent the obstacles
and the security borders are drawn grey. In the following we present the results of each
phase of our controller generation methodology.

To synthesise the optimal controller we approximate real variables roundingx and
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Figure 24: Truck and Trailer optimal trajectory generated by CGMurphi from initial
positionx = 12, y = 16, θS = 0, θC = 0.

States Transitions CTRL Rules Time (sec.) CTRL Size
12,227,989 364,334,756 1,749,586 13,708 37,589 Kb

Table 5: Controller Synthesis for the Truck and Trailer

y to 0.2 meters andθS , θC andu to the nearest degree. Table 5 shows the result of the
synthesis (performed using a 2.8GHz Intel Xeon workstationwith 4GB of RAM) and
states that CGMurphi is able to deal with systems having millions of states.

7.2.4 Robust Controller Generation

Then, we single out thelive states in the optimal controller by calculating the proba-
bility pc on each state (see Sect. 5.1). Using Eq. 1 withkc = 4 andn = 29 we obtain
the distribution of probabilitypc shown in Figure 25. The graph shows the number of
states having a given value forpc. It is clear that most of the states arelive (high values
of pc), whereas there is a little but consistent set ofdeadstates. If we setMc to 0.1, we
have that|S| = 1, 493, 876 and so in the last phase we have to consider only85% of
states in the optimal controller.

Note that, in the system under consideration, there are two kinds ofextremeposi-
tions: (a) when the truck is very near to obstacles and (b) when the truck and trailer
are in thejackknifeposition (i.e. when|θS − θC | = 90◦). Indeed, in the case (a) only
a very little number of actions are safe for the truck, whereas the other ones make it
crash on an obstacle. On the other hand, in the case (b), it is very difficult to bring
the truck outside the jackknife position, since the truck could follow an exceedingly
longalmost circulartrajectory. Therefore this phase correctly identifies asdeadall the
states corresponding to positions of case (a). On the other hand, positions of case (b)
could be identified asdeadonly after the third phase.
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Figure 25: Distribution ofpc on the optimal controller states for the Truck and Trailer
controller.

Finally, we consider the setS and we perform the strengthening of the optimal
controller using the algorithm of section 5.2 and choosingks = 4, Ml = 0.7 and
Mh = 0.2 as the constant values.

After the strengthening phase, a significant number of entries (1,725,529) has been
added to the controller to make it robust, due to the complexity of the truck-trailer
dynamics. On the other hand, 218,260 more states of the controller have been marked
asdead: these states correspond to jackknife positions of the truck and trailer. The
final controller now handles a total of 3,256,855 states and its size is 71,650Kb.

Note that the last two phases wereparallelisedby partitioning the controller states
in 9 subsets and performing the analysis and strengthening separately for each of these
partitions using different workstations. In this way, generating the robust controller
took less than an hour.

In order to check the robustness of final controller, we considered, from eachlive
state in the controller, a trajectory starting from it. For each states occurring in a given
trajectory, we applied a random disturbance on the state variables, generating a new
statesp, and then we applied tosp the rule associated to the controller states′ that is
nearest tosp. A trajectory isrobust if, applying the disturbances above, it eventually
reaches the goal state.

Range of Disturbances Range of Disturbances Robust
for x,y for θS ,θC Trajectories
± 0.1m ± 5◦ 95%
± 0.25m ± 5◦ 94%
± 0.5m ± 5◦ 91%

Table 6: Truck and Trailer results about controller robustness

38



As shown in Table 6, we obtain completely satisfying percentages of robust trajec-
tories: even in the presence of big disturbances (0.5 metersfor x andy and 5 degrees
for θs andθc) the controller robustness is more than 90%.

7.2.5 Controller Compilation

Normal LZ BDD
Entries 3,256,855

Size 71,650 Kb 22,644 Kb (31.6%) 7,038 Kb (9.8%)
Time 89 ms 3173 ms 108 ms

Table 7: Truck and Trailer controller compression results

As final step, we compressed the controller using the scheme presented in Section 6.
Results are in Table 7. As we can see, the controller has a verybig size. However, the
best OBDD compression scheme is able to reduce the size of thecontroller up to 90.2%
space savings, that is 21.8% more than using LZ77 compression. Moreover, the OBDD
compression wins also with respect to the access time.

7.3 The Turbogas Control Problem

In this section we sketch our experimental results on using CGMurphi for the genera-
tion of the controller for areal worldhybrid system, namely the gas turbine of a 2MW
electric co-generative power plant(ICARO) in operation at the ENEA Research Cen-
ter of Casaccia (Italy). The generated controller has to bring the plant to itssetpoint
by modifying the opening of thefuel valve. In the following, unless otherwise stated,
all our data (e.g. block diagrams, parameter values, etc) are taken from the ICARO
documentation [19].

Due to its complexity, this case study is still in progress, thus in the following we
will show only the result from the Optimal Controller Generation phase.

7.3.1 Problem Formulation

TurbogasController Fuel Valve
Opening (fg102)

User Demand (u)

Turbine Rotation Speed (Vrot)
Electric Power Generated by the Alternator (Pel)

Compressor Pression (Pmc)

Exhaust Smokes Teperature   (Texh)

Figure 26: High level block diagram of ICARO Turbogas Control System.
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Actually, ICARO plant consists of many subsystems. Here we only focus on one
of the many subsystems of ICARO (e.g., see [9, 7, 8]). Namely we focus on theGas
Turbine ICARO subsystem, which corresponds to the block namedTurbogasin Fig.
26. As a matter of fact, this module consists, in turn, of manysubsystems (e.g. the
compressor, the combustion chamber, the turbine itself andthe generator). For our
purposes here we can simply use it as a black box and look at itsinput-output model.

The Gas Turbine module has the following input variables.

• Variable fg102 takes value in the real interval [0,1]. This variable gives the
opening fraction of the turbogas fuel gas valve (namely valve FG102). It takes
value 0 when the valve FG102 is fully closed (no fuel can flow trough the valve)
and value 1 when the it is fully opened. This is acontrol variable, i.e. a variable
whose value can be chosen so as to achieve the control goals.

• Variableu models theUser Demandof electric power. This variable has to be
considered as adisturbance, i.e. a variable whose value we (i.e. the controller)
cannot choose. However, since our controller generation framework works on
deterministic plant models, in our experiment we always setu to its nominal
value, i.e.MAX U

2 .

The output variables of the module are the following.

• Pel, theElectric powergenerated by the alternator.

• Vrot, theRotation speedof the gas turbine.

• Texh, theTemperatureof the exhaust smokes.

• Pmc, thePressureof the compressor.

Ṗel(t) = α1,1Pel(t) + α1,2fg102(t) + α1,3u(t)

Ṫexh(t) = α2,1Texh(t) + α2,2fg102(t) + α2,3(Pel(t)− P 0
el)

+ α2,4(Pmc(t)− P 0
mc)

V̇rot(t) = α3,1Vrot(t) + α3,2fg102(t) + α3,3(Pel(t)− P 0
el)

Pmc(t) ∈ [MIN Pmc,MAX Pmc]

| Ṗmc(t) | ≤ MAX D Pmc

u(t) ∈ [0,MAX U ]

| u̇(t) | ≤ MAX D U

Figure 27: Turbogas ODE model used for our analysis.

For the purposes of our analysis we used the ODE (Ordinary Differential Equation)
model, shown in Fig. 27, to link the turbogas input variableswith output variables. Of
course such a model is only valid in a neighbourhood of the setpoint.
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const -- constant declarations
SAMPLING_FREQ: 100.0; -- Inverse of the sampling time

-- (Hz)
MAX_U: 200.0; -- Max user demand value (kW)
MAX_D_U: 10.0; -- Max of time derivative of user demand
MAX_D_P: 0.1; -- Max of time derivative of compressor

-- pression
MAX_PRES_COMPR: 13.0; -- Max compressor pression (bar)
MIN_PRES_COMPR: 11.0; -- Min compressor pression (bar)
Power_setpnt: 2000.0; -- Setpoint of Electric Power

-- (kW)
Texh_setpnt: 552; -- Setpoint of exhaust smokes

-- temperature (C)
Vrot_setpnt: 75; -- Setpoint of rotation speed (RPM)
Pow_v_coef: Power_setpnt; -- α1,1 in Fig. 27
Texh_v_coef: 0.1*Texh_setpnt; -- α2,1 in Fig. 27
Vrot_v_coef: 2*Vrot_setpnt; -- α3,1 in Fig. 27
FREQ_1: 100; -- frequency injection disturbances

type -- type declarations
Disturbance_type : -1..1;
real_type : real(4, 2); -- used for all real variables
longint_type : -50000 .. +50000; -- used for counters

var -- (global) variable declarations
step_counter : longint_type; -- initialized to 0

-- We do: step_counter := (step_counter + 1) FREQ 1-- at each time
stepPower : real type; -- Generated Electric Power

Figure 28: A glimpse of the CGMurphi declarations used in theTurbogas controller
model.

Note that, according to the model in Fig. 27, the compressor pressurePmc can
change valuenondeterministicallyas long as it satisfies the constraints given in Fig.
27. We do not need a more detailed model here since the compressor pressure is only
used as input to the fuel gas valve controller whose requirements do not involve the
compressor pressure.

Finally, the plant setpoint, that is the set of goal states ofour plan, is given by the
following values of the output variables:

• Electric Power setpoint value:P 0
el=2000 (KW).

• Exhaust Smokes Temperature setpoint value:T 0
exh=552 (C).

• Turbine Rotation Speed setpoint value:V 0
rot=75 (RPM)

• Compressor Pressure setpoint value:P 0
mc=12 (Bar)

7.3.2 CGMurphi Model Description

In order to use CGMurphi, we discretise the ODEs given above with sampling time
0.01 seconds, as suggested in [19], and truncating real valued variables to 3 digits of
mantissa and 2 of exponent. An example of the CGMurphi code used in the declaration
section of our model is in Fig. 28.
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Note that in this way the discretised state space consists ofapproximately2180

states. This rules out all brute-force methods consisting in explicitly enumerating the
state space.

7.3.3 Optimal Controller Generation

Reachable States Transitions Controller Rules Time (sec.) Used Memory Controller Size
11,240 112,400 11,240 141 10,115 Kb 549 Kb

Table 8: Turbogas controller synthesis results

Table 8 shows the results of the controller synthesis. As we can see, CGMurphi was
able to complete the controller generation with 10 Megabytes of RAM, since the system
reachable states are indeed only11, 240, compared to the2180 states resulting from
the model specification. We are still working on this system,and we expect that the
controller validation will show that the controller needs to be strengthened by adding
more states to the reachable region. However, this first result is very promising and
shows how reachability analysis can help in the generation of controllers for complex
systems.

8 Conclusions

In this paper we presented CGMurphi, an automatic tool for the generation of numeri-
cal controllers. The tool exploits explicit model checkingtechniques, in particular the
reachability analysis algorithm, to sensibly reduce the efforts needed to analyse the
dynamics of very complex systems, such as nonlinear and hybrid systems, which are
often out of scope for the current controller generation tools.

Moreover, CGMurphi is also able to apply a suitably adapted Dijkstra algorithm
during the system state space exploration, to computeoptimalcontrollers, and to make
them robust thanks to an iterativestrengtheningalgorithm which incrementally add
new control actions to the controller table in order to handle unexpected system states
due to disturbances.

Finally, since numerical controller tables may contain millions of state-rule pairs,
CGMurphi includes a OBDD encoder for such tables, which generates a very compact
still functional representation of the original controller, which can be in turn exported
in C or VHDL language, to be easily embedded in software/hardware devices.

We extensively experimented our methodology on a variety ofacademic case stud-
ies, including theinverted pendulum on a cartand thetruck and trailer with obstacles
avoidance, but also on real industrial applications, like theturbogas control system,
whose development is still in progress.

The experimental results show that CGMurphi is a very versatile product that can
be used as a complete and effective controller generation tool for challenging complex
systems.
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