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Abstract—Many software as well digital hardware automatic ~ implementation parameters such as code size or execution
synthesis methods define the set of implementations meeting time.
the given system specifications with a boolean relatiolkK. In While this problem has been widely studied in digital

such a context a fundamental step in the software (hardware) . . .
synthesis process is finding effective solutions to the functional hardware synthesis [3][4], little has been done in a sofwar

equation defined by K. This entails finding a (set of) boolean ~ Synthesis context. This is not surprising since software
function(s) F (typically represented using OBDDs, Ordered  synthesis from formal speci cations is still in its infancy

Binary Decision Diagram$ such that: 1) for all x for which K = unfortunately the approaches developed for hardware syn-
is satisfiable, K(x, F (x)) = 1 holds; 2) the implementation of = hagis cannot be directly used in a software context. In

F is efficient with respect to given implementation parameters fact thesi thods t fi hard imol tati
such as code size or execution time. While this problem has act, syntnesis methods targeting a haraware impiementat

been widely studied in digital hardware synthesis, little has  typically aim at minimizing the number of digital gates and
been done in a software synthesis context. Unfortunately, the of hierarchy levels. Since in the same hierarchy level gates

approaches developed for hardware synthesis cannot be directly output computation iparallel, the hardware implementation
used in a software context. This motivates investigation of \ycEgT (Worst Case Execution Timis given by the number

effective methods to solve the above problem wheR has to . . .
be implemented with software. In this paper, we present an of levels. On the other hand, a software implementation will

algorithm that, from an OBDD representation for K, generates  have tosequentiallycompute the gates outputs. This implies
a C code implementation for F that has the same size as the that the software implementation WCET is the number of

OBDD for F and a worst case execution time linear innr,  gates used, while a synthesis method targeting a software
being n = |x| the number of input arguments for functions in  jmplementation may obtain a better WCET. This motivates

F and r the number of functions in F. Moreover, a formal . S .
proof of the proposed algorithm correctness is also shown. investigation of effective methods to solve the above bl

Finally, we present experimental results showing effectiveness WhenF has to be implemented with software.

of the proposed algorithm. A. Our Contribution
KeywordsControl Software Synthesis; Embedded Systems; . .
Model Checking In this paper, we present an algorithm that, from an

OBDD representation faK , effectively generates a C code
I. INTRODUCTION implementation folK that has the same size as the OBDD

Many software as well digital hardware automatic syn-for F and a WCET linear in linear inr, beingn = jxj the
thesis methods de ne the set of implementations meetingg_umber of bits encoding stateandr = juj the number of
the given system speci cations with a boolean relation its encoding actiom. This is done in two steps:

Given ann-bits (resp.,r-bits) binary encodingof states 1) from an OBDD representation fdt we effectively
(resp.,actiong of the system as it is usually done in Model compute an OBDD representation for following the
Checking [7] (see Sect. 11I-B), such relation typically ésk lines of [3];

as input then-bits encoding of a stata and ther-bits 2) we generate a C code implementation fowith the
encoding of a proposed action to be perforraednd returns above described properties of code size and WCET.

true (i.e., 1) if and only if the system speci cations are met  We formally prove both steps 1 and 2 to be correct.
when performing actioru in statex. In such a context, a This allows us to synthesize correct-by-constructon-
fundamental step in the software (hardware) synthesis prdrol software provided thatK is provably correct with
cess is nding effective solutions to the functional eqoati respect to initial formal specications. This is the case
de ned by K, i.e.,K(x;u) =1. This entails nding a tuple of [6], where an algorithm is presented to synthedie

of boolean functions = H;:::;f i (typically represented starting from a) the formal speci cation of a Discrete-Time
using OBDDs, Ordered Binary Decision Diagramg$2]) Linear Hybrid System@TLHS in the following) modeling
such that 1) for allx for which K is satis able (i.e., it the system (plant) to be controlled, b) its system level
enables at least one actio®,(x; F (x)) =1 holds, and 2) formal specications (specifying the goal to be reached
the implementation of is ef cient with respect to given and the safe states to be traversed in order to reach it)
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and c) the quantization schema (i.e., the number of bitsvill not be exploited. In our approach, we exploit inter-
available for analog-to-digital conversion). The frameivo OBDDs nodes sharing, thus the control software we generate
in [6] is depicted in Figure 1. With respect to Figure 1, thefully takes advantage of OBDDs compression.
approach proposed in this paper may be used to perform step Finally, we present experimental results showing effec-
3. Thus, this methodology allows a correct-by-construrctio tiveness of the proposed algorithm. As an example, in less
control software to be synthesized, starting from formalthan 1 second and within 350 MB of RAM we are able
speci cations for DTLHSSs. to synthesize the control software for a functikn of 25
Note that the problem of solving the functional equationboolean variables, divided in = 20 state variables and
K (x;F (x)) = 1 with respect toF is trivially decidable, r = 5 action variables, represented by an OBDD with
since there are nitely mani . However, trying to explicitly ~about6:6 10* nodes. SuclK represents the set of correct
enumerate alF requires time (2 '2"). By using OBDD- implementations for a real-world system, namely a multi-
based computations, we are able to comphlten time input buck DC/DC converter [8], obtained as described
O(r2") in the worst case. However, in many interestingin [6]. The control software we synthesize in such a case
cases OBDD sizes and computations are much lower thahas aboutl:7  10* lines of code, whilst a control software
the theoretical worst case (e.g., in Model Checking applicanot taking into account OBDDs nodes sharing would have

tions, see [7]). had about2:1 10 lines of code. Thus, we obtain 20%
Furthermore, once the OBDD representation forhas ~ 9ain towards a trivial implementation. .
been computed, a trivial implementation Bf could use This paper is organized as follows. In Section Il we

a look-up table in RAM. While this solution would yield give the basic notions to understand our approach. In Sec-
a better WCET, it would imply a( r2") RAM usage. tion IV we formally de ne the problem we want to solve.
Unfortunately, implementations fét in real-world cases are In Section V we give de nition and main properties of
typically implemented on microcontrollers (this is the eas COBDDs (i.e., Complemented edges OBDD®n which
e.g., forembedded systeinSince microcontrollers usually Our approach is based. Section VI describes the algorithms
have a small RAM, the look-up table based solution is notour approach consists of, whilst Section VII proves it to be
feasible in many interesting cases. The approach we preseg@rrect. Section VIII presents experimental results shgwi
here will rely on OBDDs compression to overcome sucheffectiveness of the proposed approach. Finally, Section |
obstruction. presents the concluding remarks and gives some ideas for
Moreover, F : B" | B is composed byr boolean future work.
functions, thus it is represented byOBDDs. Such OBDDs
typically share nodes among them. If a trivial implementa-
tion of F in C code is used, i.e., each OBDD is translated as This paper is an extended version of [1]. With respect
a stand-alone C function, such inter-OBDDs nodes sharingp [1], this paper provides more details in the introduction

Il. RELATED WORK



and in the related work description, extends basic de ni- Finally, we note that our work lies in the wider area of
tions and algorithms descriptions, shows omitted proofs fosoftware synthesis, which has been widely studied since a
theorems and provides a revised version of the experimenttong time in many contexts. For a survey on such (non-
Synthesis of boolean functions satisfying a given control) software synthesis works, see [13][14].

boolean relatiorK in a way such thakK (x;F (x)) = 1 is

also addressed in [3]. However, [3] targets a hardware set-
ting, whereas we are interested in a software implememtatio In the following, we denote witiB = f0; 1g the boolean
for F. Due to structural differences between hardware andlomain, where0 stands forfalse and 1 for true. We will
software based implementations (see the discussion in Sedenote boolean functions : B" ! B with boolean
tion 1), the method in [3] is not directly applicable here. An expressions on boolean variables involvinglogical OR),
OBDD-based method for synthesis of boolean (reversible) (logical AND, usually omitted thuxy = x vy), (log-
functions is presented in [4] (see also citations thereof)ical complementation) and (logical XOR). We will also
Again, the method in [4] targets a hardware implementationdenote vectors of boolean variables in boldface, exg=
thus it is not applicable here. hX1;:::; Xni. Moreover, we also denote withy, = ¢(x) the

IIl. BASIC DEFINITIONS

relation. That is to say, the starting pointHsrather thark ]
(with respect to the discussion in Section I-A, it is supgbse A Most General Optimal Controllers
that step 1 has already been performed). Moreover, the A Labeled Transition SystenfLTS) is a tupleS =
algorithm in [9], though OBDD-based, does not generatgS; A; T) whereS is a nite set ofstates A is a nite set of
a software with the same size of the OBDDs for nor  actions andT is the (possibly non-deterministitjansition
an estimation of its WCET (in the sense explained inrelation of S. A controller for an LTS S is a function
Section 1) is provided. Finally, an implementation of the K : S A! B enabling actions in a given state. We denote
algorithm in [9] is not provided, thus we cannot make awith Dom(K) the set of states for which a control action
direct experimental comparison with our method. is enabled. An LTScontrol problemis a tripleP = (S; I;
Synthesis of control software is also addressed in [10]G), whereS is an LTS andl;G  S. A controllerK for
where the focus is on the generation of control protocolsS is a strong solutionto P if and only if it drives each
Such method cannot be applied in our context, where wénitial states 2 | in a goal statet 2 G, notwithstanding
need a C software implementation. nondeterminism of. A strong solutiorK to P is optimal
In [6], an algorithm is presented which, starting from if and only if it minimizes path lengths. An optimal strong
a formal speci cation of a DTLHS, synthesizes a correct-solutionK to P is themost general optimal controllgwe
by-construction boolean relatiad, and then a correct-by- call such solution aimmgg if and only if in each state it
construction control software implementation fEr (see  enables all actions enabled by other optimal controlleos. F
Figure 1). However, in [6] the implementation & is  more formal de nitions of such concepts, see [15].
not described in detail. Furthermore, the implementation Ef cient algorithms, typically reminiscent of early work
synthesis described in [6] has not the same size of the OBDBn minimum paths by Dijkstra [16], to compute controllers
for F, i.e., it does not exploit OBDD nodes sharing. starting from suitable (nondeterministic) LTS control ipro
Many other works in the literature has the goal of syn-lems have been proposed in the literature: e.g., [11] ptesen
thesizing controllers as boolean relatioks, under very an algorithm to generate mgos, while [12] show an algorithm
different assumptions for the target dynamic system to bdor non-optimal (but smaller in size) controllers. Once a
controlled. Such works do not deal with the effective imple-controllerK has been computed, solving and implementing
mentation ofK , thus they may use the approach describedhe functional equatiok (x;u) = 1 allows a correct-by-
here in order to have an effective software implementatiorconstruction control software to be synthesized.
of K. As an example, the following works may be cited ) ] )
as closer to ours. In [11] controllers are generated startinB- Binary Encoding for States and Actions
from nite-state nondeterministic dynamic systems (anggi Vectors of boolean values 2 B" (resp.,u 2 B") may
from planning problems). In [12] a method to synthesizebe used to represent state2 S (resp., actionsa 2 A)
non-optimal (but smaller in size) controllers is presented of an LTSS = (S;A;T) (and thus of a controller for
In [5], an algorithm is presented which computes boolearS) as follows. Letn = blog,(jSj)c + 1. Then,n boolean
functionsF satisfying a given boolean relatidh in a way  values (bits) may be used to represent ang S. As an
such thatK (x; F (x)) = 1. This approach is very similar example, in Model Checking applications [7] an order on
to ours. However [5] does not generate the C code contrdb = fs;;:::;sn,9 is xed (let s; < ::: < s, be such
software and it does not exploit OBDD nodes sharing. order), and then the binary encoding S! B" is de ned



P .
as (si)= bsuchthat [, 2 b =i
construction may be applied to actions.

1. An analogous

C. OBDD Representation for Boolean Functions

A Binary Decision Diagran{BDD) R is a rooted directed
acyclic graph (DAG) with the following properties. Each
R nodev is labeled either with a boolean variablar(v)
(internal node) or with a boolean constavdl(v) 2 B
(terminal node). EachR internal nodev has exactly two

be the boolean variables labelirig internal nodes. Each
terminal nodev representd,(x) = val( v). Each internal
nodev represents (X) = Xifnign(v)(X) + Xifiow(vy(X),
being xj = var(v). An Ordered BDD(OBDD) is a BDD

where, on each path from the root to a terminal node, the

u0

ul

x0

x1

x2

variables labeling each internal node must follow the same

ordering.

V. SOLVING A BOOLEAN FUNCTIONAL EQUATION

control problem P (S; I; G). We want to solve
the boolean functional equatioK (x;u) = 1 with re-
spect to variablesu, that is we want to obtain boolean
Kjui= 1000, =1, (x(X;u) = 1. This problem may be
solved in different ways, depending on tha&rget imple-
mentation(hardware or software) for functiorfs. In both
cases, it is crucial to be able to bound the WCBENo(st
Case Execution Timeof the obtained controller. In fact,

Figure 2.  An mgo example

V. OBDDs wiTH COMPLEMENTED EDGES

In this section, we introduce OBDDs with complemented
edges (COBDDs, De nition 1), which were rst presented
in [17][18]. Intuitively, they are OBDDs where else edges
(i.e., edges of typév; low(v))) may be complemented. Then
edges (i.e., edges of typgr;high(v))) complementation
is not allowed to retain canonicity. Edge complementation
usually reduce resources usage, both in terms of CPU and
memory.

Definition 1. An OBDD with complemented edg&sOBDD

controllers must work in an endless closed loop with thein the following) is a tuple = (V, V, 1, var, low, high,

systemS (plant) they control. This implies that, every
secondsgampling timg the controller has to determine the
actions to be sent t8. Thus, in order for the entire system
(plant + control software) to properly work, the controller
WCET upper bound must be at mokt

a hardware implementation. In this paper, we focus on
software implementations fof; (control softwarg. As it

is discussed in Section |, simply translating an hardware

implementation into a software implementation would re-
sult in a too high WCET. Thus, a method directly tar-

geting software is needed. An easy solution would be

to set up, for a given stat®, a SAT problem instance
v A CKt
is equisatis able toK and each clause; is eitherx; (if
Xj is 1) or x; (otherwise). TherC may be solved using a
SAT solver, and the values assignedutdn the computed

satisfying assignment may be returned as the action to be

taken. However, it would be hard to estimate a WCET for

ip) with the following properties:

variables;

2) V is a nite set of nodes

3) 1 2 V is theterminal node of , corresponding to
the boolean constarit (non-terminal nodes are called
internal);

4) var; low; high; ip are functions de ned on internal
nodes, namely:

var:V nflg!V assigns to each internal node
a boolean variable iV

high[low] : V nflg! V assigns to each internal
nodev a high child[low child] (or then child[else
child]), representing the case in whigar(v) = 1
[var(v) =0]

ip: Vnflg! B assigns to each internal node
v a boolean value; namely, ifp( v) =1 then the
else child has to be complemented, otherwise it is
regular (i.e., non-complemented);

such an implementation. The method we propose in this 5) for each internal node, var(v) < var(high(v)) and

paper overcomes such obstructions by achieving a WCET

proportional torn.

var(v) < var(low(v)).



A. COBDDs Associated Multigraphs

We associate to a COBDD=(V, V, 1, var, low, high,
ip) a labeled directed multigrapB( ) = (V;E) such that
V is the same set of nodes ofind there is an edde; w) 2
E if and only if w is a child ofv. Moreover, each edge=
(v;w) 2 E has a typaype(e), indicating ife is athen edge
(i.e., if w is a then child ofv), aregular else edgéi.e., if w
is an else child ofv with ip( v) = 0), or acomplemented
else edgdi.e., if w is an else child ol with ip( v) =1).

Figure 2 shows an example of a COBDD depicted via its
associated multigraph, where edges are directed downward
Moreover, in Figure 2 then edges are solid lines, regula
else edges are dashed lines and complemented else edé

are dotted lines.

The graph associated to a given COBDD- (V, V, 1,
var, low, high, ip) may be seen as a forest with multiple
rooted multigraphs. In order to select one root vertex an
thus one rooted multigraph, we de ne t@®©BDD restricted
tov 2 V as the COBDD , = (V, W, 1, var, low, high,
ip) such thatv, = fw 2 V j there exists a path from to
w in G( )g (note thatv 2 V).

B. COBDDs Properties
For a given COBDD =(V, V, 1, var, low, high, ip)
the following properties follow from de nitions given abev
1) G() is a rooted directed acyclic (multi)graph (DAG);
2) each path irG( ) starting from an internal node ends
in 1;

var (V).

We de ne theheight of a noder in a COBDD (notation
height (v), or simply height(v) if is understood) as the
height of the DAGG( V), i.e., the length of the longest path
fromvto1in G().

C. Semantics of a COBDD

Example 1. Let be the COBDD depicted in Figure 2. If we
pick nodeOxe we havelOxe bK= x,J1;bK+ x,J1;b 1K=
Xob+ Xob= %o b

D. Reduced COBDDs and COBDDs Canonicity

Two COBDDs ardsomorphicif and only if there exists a
mapping from nodes to nodes preserving attributes ip ,
high andlow. A COBDD is calledreducedif and only if it
contains no vertex with low(v) = high(v) ~ ip(v) =0,
nor does it contains distinct verticeandv®such that , and
goare isomorphic. Note that, differently from OBDDs, it is
Ipossible thathigh(v) = low( v) for somev 2 V, provided
I% tip(v) =1 (e.g., see nodeBxf andOxe in Figure 2).

heorem 1 states that reduced COBDDs aaaonical
representation for boolean functions (see [17][18]). As a
consequence, software packages implementing COBDDs op-

derations only deal with reduced COBDDs, since this allows

very fast equality tests between COBDDs (it is suf cient
to check if the (root node, ipping bit) pair is the same).
Accordingly, in the following we will deal with reduced

COBDDs only.

Theorem 1. Letf : B" ! B be a boolean function. Then
there exists a reduced COBDD = (V, V, 1, var, low,
high, ip) , anodev 2 V and a flipping bitb 2 B such that
Jv; K= f (x). Moreover, let =(V, V, 1, var, low, high,
ip) be a reduced COBDD, let;;v, 2 V be nodes and
bi;bp 2 B be flipping bits. Thenvy; K= Jv;; bKif and
only if vy = vo by = by.

VI. SYNTHESIS OFC CoDE FROM ACOBDD

control problem. Let = (V, V, 1, var, low, high, ip)
be a COBDD such that there exist2 V, b 2 B such

U= fxq; 100 xpdf ug; iis;
disjoint union operator, thuX \ U

urg (we denote with[ the
?). We will call

In De nition 2, we de ne the semanticd Kof each node  variablesx; 2 X asstate variablesand variablesi; 2 U as
v of a given COBDD as the boolean function represented gction variables

by v, given the parityo of complemented edges seen on the \We want to solve the boolean functional equation problem

path from a root tov.

Definition 2. Let = (V, V, 1, var, low, high, ip)
be a COBDD. Thesemantics of the terminal node with
respect to a flipping bib is a boolean function de ned as
J1;bK := b. The semantics of an internal node2 V with
respect to a flipping bib is a boolean function de ned as
Jv; K = x;Jhigh(v); bK + x;Jlow(v); b ip( v)K, being
Xj =var(v). When is understood, we will writd Kinstead
of JK.

Note that the semantics of a node of a COBDDis
a function of variables iV and of an additional boolean
variable b. Thus, on each nodé&vo boolean functions on
V are de ned (one for each value dj). It can be shown

(see [15]) that such boolean functions are complementary.functionvoi d K(i nt =X,

introduced in Sect. IV targeting softwareimplementation.

We do this by using a COBDD representing all our boolean
functions. This allows us to exploit COBDD nodes sharing.
This results in an improvement for the method in [5], which
targets a software implementation but which does not ekploi
sharing. Finally, we also synthesize the software (i.e., C

in [5]. This allows us to nally have aontrol softwarefor
the starting LTS. IfK is an mgo, this results in aoptimal
control softwarefor the starting LTS.

A. Synthesis Algorithm: Overview

Our methodSynthesizetakes as input, v and b such
that Jv;bK = K (x;u). Then, it returns as output a C
i nt *u) with the following



property: if, before a call t&, 8i x[i 1] = x; holds (array
indexes in C language begin fraBhwith x 2 Dom(K ), and
after the call ta<, 8i u[ i 1] = u; holds, therK (x;u)=1.
Moreover, the WCET of functioik is O(nr).

Note that our methodSynthesizeprovides an effective
implementatiorof the controllerK , i.e., a C function which

COBDD nodes. We assume that such functions also properly

updateV, var, low, high, ip inside COBDD (1 andV
are not affected).

Algorithm 2 Solving a boolean functional equation
Require: COBDD , nodev, booleanb

takes as input the current state of the LTS and outputs thEnsure: SolveFunctionalEg;v;b):

action to be taken. Thug is indeed a control software.
Function Synthesizeis organized in two phases. First,
starting from , v andb (thus fromK (x;u)), we generate

takes as input the state bit vectorand computes theth
bit u; of an output action bit vectau, whereK (x;u) =1,
provided thatx 2 Dom(K). This computation is carried

translated inside functionoi d K(int *x, int =*u).

This step is performed by maintaining the structure of the

exploit COBDD nodes sharing in the generated software,

This phase is performed by functidBenerateCCode
Thus, functionSynthesizas organized as in Algorithm 1.
Correctness for functiosynthesizds stated in Theorem 6.

Algorithm 1 Translating COBDDs to a C function
Require: COBDD , nodev, booleanb

Ensure: Synthesizé;v;b):

SolveFunctionalE@; v;b)

B. Synthesis Algorithm: Solving a Functional Equation
In this phase, starting from, v andb (thus fromJv; bK=

To this aim, we follow an approach similar to the
one presented in [5], which is reminiscent of early work
on minimum paths by Dijkstra. Namely, we compute

fi(x). This is effectively performed by Algorithm 2, where
we use the following COBDDs manipulation functions:

COBDD_APP (instantiation) such that hvapp ;
bapp i = COBDD_APRXi,; il Xiy
vi; by i owe b vib) if and  only if

Napp ;bapp K= Jv; U’ixilszl;blK:::;x i = Vicibk K
COBDD EX (existential quanti er elimination) such
that hvex ; bex i = COBDD_EX(Xi,; :::; Xi.; V; b
if and only if Jvex ;bex K= 9x;,; 1105 Xi, v, K

We note that ef cient (i.e., at mosD(jVjlogjVj)) al-

1. forall i 2 [r] do

2. Ji; bK COBDD_EX(Uj+1;: 3,  Un;
COBDD APRuy; :::; ui; vp; by i v 15b 1
1; 0; v; b))

Correctness for functiolsolveFunctionalEqs proved in
Lemma 3.

C. Synthesis Algorithm: Generating C Code
In this phase, starting from COBDD nodes :::;Vv; and

in the rst phase, we generate two C functions:vipi d
K(int *x, int =u),whichis the required output func-
tion for our methodSynthesizeii) i nt K_bits(int =*x,

i nt action), which is an auxiliary function called by
K. A call to K bits(x, i) returnsf;(x), beingx] j

1] = x; for all j 2 [n]. This phase is detailed in Algs. 3
(function GenerateCCodeand 4 (function Translatg. In
such algorithms we suppose to be able to print a nade
e.g., by printing the exadecimal value of a pointewto

Algorithm 3 Generating C functions

1 print “int Kbits(int »x, int action) f
int ret_b; switch(action) f”

2. forall i2[r]do

3 print “case ", i 1,“:”

4. print “ret_ b ="1Nh," goto L " v, ;"

5. print “g” /* end of the switch block */

W ?

7. forall i 2 [r] do

8 W Translaté;v ;W)

9: print “g K(int*x x, intx u) fint i;”

10: print “ for(i=0; i<"r” i++)”

11: print “  u[i] = Kbits(x, i);0"

Details of Function GenerateCCodéAlgorithm 3):
Given inputs ; v; by; :::; vy Iy (output by SolveFunc-
tionalEg, Algorithm 3 works as follows. First, function
int Kbits(int »x, int action) is generated. If
x[j 1= x; forallj 2 [n], the callK_bits(x, i)
has to returnf;(x). In order to do this, the grap( vi)

gorithms [17][18] exist to compute the above de ned func-is traversed by taking, in each node the then edge if
tions. Moreover, the above de ned functions may create new[j 1] =1 (with j such thatar(v) = x;) and the else edge



otherwise. When nodg is reached, theft is returned if and The C code block for internal node is generated in
only if the integer sunt+ b is even, being the number of lines 3 and 7-13. The block consists of a labelv: and
complemented else edges traversed. Note that parity 6f ani f -t hen- el se C construct. Note that labél v uni-
may be maintained by initializing a C variablet _b tob,  vocally identi es the C code block related to nogle This
then complementing et _b (i.e., by performing a et _b may be implemented by printing the exadecimal value of a
= lret_b statement) when a complemented else edge ipointer tov.
traversed, and nally returninget _b. Thei f-then-el se C construct is generated so as to
This mechanism is implemented inside furgctidnbi t s traverse nodes in graph G{ v) in the following way. In
by properly translating each COBDD no#e? ir:l Vy, in line 8 the check[i 1] =1 is generated, beingsuch that
a C code block. Each block is labeled with a unique labelar(v) = x;. The code to take the then edgevaf also gen-
depending or¥, and maintains in variableet _b the current  erated. Namely, it is suf cient to generategat o statement
parity of c+ Iy as described above. This is done by functionto the C code block related to notigh(v). In lines 10-11
Translate called on line 8 and detailed in Algorithm 4. and 13 the code to take the else edge is generated, in the case
Thus, the initial part of functiorkK bi ts consists of a x[i 1] =1 is false. In this case, if the else edge is com-
swi t ch block (generated in lines 1-5 of Algorithm 3), plemented, i.e.,ip( v) holds (lines 10-11), it is necessary
which initializesr et _b to ly and then jumps to the label to complement et _b and then perform got o statement
corresponding to node;. Then, the C code blocks cor- to the C code block related to nodew(v) (lines 10-11).
responding to COBDD nodes are generated in lines 6-®therwise, it is suf cient to generate @ot o statement to
of Algorithm 3, by callingr times functionTranslate(see the C code block related to nod@w(v) (line 13).
Algorithm 4) with parameters;;:::;Vv;. Note thatW main- Thus, the block generated for an internal nodefor
tains the already translated COBDD nodes. Since functioproperi, | andh, has one of the following forms, depending
Translateonly translates nodes not W, this allows us to  on ip( v):

i i insi (vi) insi _ _
exploit sharing not only inside each , but also inside Lv: if (x[i 1) goto L_h: else goto

L_I;
L v: if (x[i 1) goto L_h; else fret_b
= lret_b; goto L_I;g.

Finally, functionK is generated in lines 9-11. Function
K simply consists in & or loop lling each entryu[i ]
of the output arrayu with the boolean values returned by _ _
K_bits(x, i). Correctness of functioGenerateCCode  There are two base cases for the recursion of function

is proved in Lemma 5. Translate
v2 W (line 1), i.e.,v has already been translated into
Algorithm 4 COBDD nodes translation a C code block as above. In this case, the set of visited
Require: COBDD , nodev, nodes seW COBDD nodesW is directly returned (line 1) without
Ensure: Translaté;v; W ): generating any C code. This allows us to retain COBDD
1: if v2 W then return W node sharing;
2 W  WIf vg v = 1 (line 4), i.e., the terminal nodd has been
3 print “L_", v, “:” reached. In this case, the C code block to be generated
4- if v = 1 then is simplyL_1: return ret_b;. Note that such a
5. print “return ret_b;” block will be generated only once.
6: else _ In all other cases, functioiranslateends with the recur-
7. leti be such thavar(v) = x sive calls on the then and else edges (lines 14-15). Note
& print “if(x["i 1]==1)goto L_", high(v) that the visited nodes s&¥ passed to the second recursive
9 if ip(v) then call is the result of the rst recursive call. Correctness of
10:  print “el se fret_b = lret_b;"’ function Translateis proved in Lemma 5.
11: print “goto L_", low(v),"; g"
12: else
13: print “el se goto L_", low(v) D. An Example of Translation
14: W  Translaté; high(v); W)

Consider the COBDD shown in Figure 2. Within ,
consider mgoK (Xg; X1; Xp; Ug; Uy) = JOx17, 1K By
applying SolveFunctionalEgwe obtainf (Xg; X1; X2) =
JOx15; 1Kand fo(Xg; X1; X2) = JOx10; 1K Note thatOxe

Details of FunctionTranslatg/Algorithm 4): Given in-  is shared betwee@( ©xs) andG( <o), Finally, by calling
puts ;v; W , Algorithm 4 performs a recursive graph traver- GenerateCCodésee Algorithm 3) orf 1; f 2, we have the C
sal of G( v) as follows. code in Figure 3.

15. W  Translaté; low(v); W)
16: return W




int Kbits(int *x,
int ret_b;
switch(action) {

int action) {

case 0: ret_b = 0; goto L_0x15;

case l: ret_b = 0; goto L_0x10;
}
L_0Ox15:

if (x[0] == 1) goto L_O0x13;

else { ret_b = !ret_b; goto L_O0x14;}
L _0x13:

if (x[1] == 1) goto L_Oxe;

else{ ret_b = !ret_b; goto L_1; }
L_Oxe:

if (x[2] == 1) goto L_1;

else{ ret_b = !ret_b; goto L_1; }
L _Ox14:

if (x[1] == 1) goto L_Oxe;
else gotoL_1;

L_0x10:
if (x[0] == 1) goto L_Oxe;
else { ret_b = !ret_b; goto L_Oxf; }
L_Oxf:
if (x[1] == 1) goto L_Oxe;
else{ ret_b = !ret_b; goto L_Oxe; }
L_1:
return ret_b;
}
void K(int xx, int xu) {
int i;
for(i = 0; i < 2; i++)
ufi] = Kbits(x, i);
}

Figure 3. C code for the mgo in Figure 2 as generatedsiaythesize

VII. TRANSLATION PROOF OFCORRECTNESS

We have thatx 2 Dom(K) implies that either

x 2 Dom(Kjy,=0) or x 2 Dom(Kjy,=1).
Suppose X 2 Dom(Kj,,=1) holds. We
have that Kjy,=1 (X;f2(x);:::;f7 (X)) = 1,
where for all i = 2;:00r 0 fi(x) =

By construction, we
and fi(x) =

have thatfi(x) = 1
fi(x) for i 2, thus 1 =

Analogously, ifx 2 Dom(K j,,=1 )" X 2 Dom(K jy,=0 ) we
have thatf ;(x) = 0 andf;(x) = fj(x) fori 2, thusl =

[ |
Lemma 3 states correctness of funct®olveFunctionalEq
of Algorithm 2.

Lemma 3. Let = (V, V, 1, var, low, high, ip) be
a COBDD withV = X[U,v 2 V be a nodeb 2 B
be a flipping bit. Letdv;bK = K(x;u) andr = jUj.
Then functionSolveFunctionalBg; v;b) (see Algorithm 2)

Proof: Correctness of functions COBDD APP
and COBDD _EX (and lemma hypotheses)
implies that for all i 2 [rT fi(x) =
Uity ;iU KOGEo(X) oo a(X) i Luiensiiiiur)

By Lemma 2 we have the thesis.

Let Translatedup be a function that works as function
Translateof Algorithm 4, but that does not take nodes shar-
ing into account. FunctioWranslatedup may be obtained

In this section, we prove the correctness of our approacfrom function Translateby deleting line 1 (highlighted in

(Theorem 6). That is, we show that the functiémve gener-
ate indeed implements the given controler thus resulting

in a correct-by-construction control software.

Algorithm 4) and by replacing calls téranslatein lines 14
and 15 with recursive calls téranslatedup (with no changes
on parameters). Lemma 4 states correctness of functiams-

We begin by stating four useful lemmata for our proof. late dup.

Lemma 2 is useful to prove Lemma 3, i.e., to prove correct

ness of functionSolveFunctionalEq

Lemma 2. Let K : B" Br !
be such that fi(x) =

B and let

Proof: Let x 2 B" be such thax 2 Dom(K), i.e.,
9u K (x;u) = 1. We prove the lemma by induction an
Forr =1, we havef(x) = K(x;1). If f;(x) =1, we
haveK (x;f1(x)) = K(x;1) = fi(x) =1.If f1(x) =0,
we haveK (x;f1(x)) = K(x;0), andK (x;0) = 1 since
x 2 bom(K) andK (x;1) =0.

Suppose by induction that for allK
B" B" ! I B K(x;fi(x);:::;f7 1(x)) =
1, where for all i 2 [r 1] fix) =

Lemma 4. Let = (V, V, 1, var, low, high, ip) be a
COBDD,v 2 V be anodep 2 B be a flipping bit, andV

V be a set of nodes. Then functi@nanslatedug( ;v; W )
generates a sequence of labeled C statemnts : By such
thatk j V,j and for allw 2 V,: 1) label L_w is in B; for
somei and 2) starting an execution from labkl w with

8i 2 [n] x[i 1= x;j andret_b= b, if Jw;bK= fyp
then areturn ret_b; statement is invoked in at most
O(p) steps withret _b = f.,(x) and p = height( w).

Proof: We prove this lemma by induction on. Let
v = 1, which impliesv; bK= bandV, = f1g. We have that
function Translatedup( ;v; W ) generates a single block
B1 (thusk =1 = jVij) such thatB; =L_1: return
ret _b; (lines 3-5 of Algorithm 4). Since by hypothesis
we haver et _b= b, and since starting frorB; the return



statement is invoked iD(1) steps, the base case of the of Algorithm 4 and by functionGenerateCCod lines 6—

induction is proved.

Let v be an internal node wittvar(v) = X; and let
f(x) = Jv;bK Sincew 2 V, if and only if w =
V_ W 2 Vhigh(v) — W 2 Vigw(v), by induction hypothesis
we only have to prove the thesis fov v. We have
that f (x) = xjJhigh(v); bK+ x;Jow(v);b ip( V)K i.e.,
f (x) = x;Jhigh(v); bK+ x;Jow(v); bKif ip(v) = 0 and
f (x) = x;Jhigh(v); bK+ x;Jow(v); bKif ip( v) =1. Since
f(x) = Xifjx,=1 (X) + Xifjx =0 (X), by Theorem 1 we
have thatJhigh(v); bK= fjy =1 (x), and thatdlow(v); bK=
fjx, =0 (X) if ip(v) = 0 and Jdow(v); K= fjx, = (X) if
ip(v)=1.

By lines 3 and 8-13 of Algorithm 4, we have
that function Translatedup( ;v;W ) generates blocks

BB11:::BinBo1:::By suchthatB =L_v: if (x[i

1] == 1) goto L_high(v); el se Bg where Bg is
either goto L_low(v); if ip(v) = 0 or fret_b
= lret_b; goto L_low(v);g if ip(v) = 1, and

8 of Algorithm 3. In fact, functionTranslate when called
on parameters v; W , returns a se®v® W, and function
GenerateCCodealls Translateby always passing th&V
resulting by the previous call. Since a block is generated fo
nodev only if v is not in W, andv is added tow only
when a block is generated for node this proves this part
of the lemma.

As for correctness, we prove this lemma by induction on
m, being m the number of times that theet urn W;
statement in line 1 of Algorithm 4 is executed. As base of the
induction, letm = 1 and let; v; W be the parameters of the
recursive call executing the rsteturn W; statement.
Then, by construction of functiorTranslate v has been
added toW in some previous recursive call with parameters
;V; W. In this previous recursive call, a blodg, with
label L_v has been generated. Moreover, for this previous
recursive call, thus for parameters/; W, we are in the
hypothesis of Lemma 4, which implies that the induction

Bi11:::Bin (B21:::Bgy) are generated by the recur- base is proved.

sive call Translatedup( ; high(v); W) in line 14 (Trans- Suppose now that the thesis holds for the st exe-
late dup( ; low(v); W) in line 15). By induction hypothesis cutions of ther et urn W; statement in line 1 of Algo-
and the above reasoning, if the execution starts at labeithm 4. Then, by construction of functiofiranslate v has

L_high(v) andr et _b= b, thenareturn ret_b; state-
ment is invoked in at mosD(p 1) steps withret _b =

been added t&V in some previous recursive call with pa-
rameters;v; W. In this previous recursive call, a blo&k,

fjx,=1 (x). As for the else case, we have that starting fromwith labelL_v has been generated. lvet; Wq;:::; Wm; W,

L _low(v) with ret_b= b (ret_b= b)if ip(v) =0
(ip(v) = 1), then areturn ret_b; statement is in-
voked in at mosO(p 1) steps withret _b = f jy, =0 (X). By
construction of blockB, starting from labelL_v, ar et ur n
ret b; statementisinvokedinatmoSi{p 1+1)= O(p)
steps withret _b = Xifjx, =1 (X) + Xifjx,=0 (X) = f(X).
Finally, note that by induction hypothests | Vhign(v)]
and !l j Viw(v)j, thus we have thak = 1+ h + |
1+ jVhigh(wl + Mow(wyl 1 Wi

]

be such that then recursive calls executing theet ur n
W, statement have parameters ;; W; (note that they are
not necessarily distinct). By induction hypothesis, fdri &
[m] starting from label_w; with 8) 2 [n] x[j 1] = X;
andret _b= b, areturn ret_b; statement is invoked
in at mostO(p) steps withret _b = f,.,(Xx). By Lemma 4

thus it holds for allv 2 V,.

Finally, Theorem 6 states and proves correctness for func-

Lemma 5 extends Lemma 4 by also considering nodesion Synthesizeof Algorithm 1.

sharing, thus stating correctness of funct@anerateCCode
of Algorithm 3 and functionTranslateof Algorithm 4.

= (V, V, 1, var, low, high,
2 V ber

Lemma 5. Let ip)

nodes and

labeled C statementB;:::By such thatk = j[{; W]
and for allv 2 [ {_; W,: 1) the labelL_v is in B; for
somej and 2) starting an execution from lab&l v with

8 2 [n] x[j 1= x; andret_b= b, if Jv;bK= fy;
then areturn ret_b; statement is invoked in at most
O(p) steps withret _b = f,.x(x) and p = height( w).

Proof: We begin by proving thak = j[i; W,j.
To this aim, we prove that for each node2 [ [_; W,,
a unique blockB, is generated. This follows by how the
nodes setW is managed by functioffranslatein lines 1-3

Theorem 6. Let = (V, V, 1, var, low, high, ip) be a
COBDD withV = X[U,v 2 V be anodeb?2 B be a
boolean. Letlv;bK= K (x;u), r = jUjandn = jXj. Then
function Synthesizé;v;b) generates a C functiowoi d

K(int *x, int =u) withthe following property: for all
x 2 Dom(K), if before a call toK 8i 2 [n] x[i 1]=

Xi, and after the call toK 8i 2 [r] u[i 1] = u;, then
K(x;u)=1.

P
Furthermore, functiork has WCET |_;

O(height(v)),

tionalEq

Proof: Let x 2 Dom(K) (i.e., 9u K(x;u) =1) and
suppose that for alj 2 [n] x[j 1] = X;. By lines 9-
11 of Algorithm 3, for alli 2 [r], u[i 1] will take
the value returned b¥ bits(x, i). In turn, by lines 3
and 4 of Algorithm 3, eaciK_bi ts(x, i) setsret_b
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Figure 4. Multi-input Buck DC-DC converter.
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to b and makes a jump to labél v;. By Lemma 3 and by

), ..., Kbits(x, r)
;=1 O(height(v;)) steps,

qguence of callsK bit s(x,
will indeed return, in at most

Corollary 7. Let =(V, V, 1, var, low, high, ip) be a
COBDD withV = X[U,v 2 V be a nodeb2 B be a
boolean. Letlv;bK= K (x;u), r = jUjandn = jXj. Then
the C functionK output by functionSynthesizé;v;b) has
WCETO(rn).

Proof: The corollary immediately follows from Theo-
rem 6 and from the fact that, for ail 2 V, height(v) n.
|

VIIl. EXPERIMENTAL RESULTS

Table |

KSSPERFORMACES
r CPU MEM K| [Fu"shl |Sw] %
1 3.0e-02 1.0e+08 12137 2646 2646  0.0e+00
2 1.1e-01 1.3e+08 25848 5827 5076 1.3e+01
3 1.7e-01 1.8e+08 36430 10346 8606 1.7e+01
4 25e-01 24e+08 46551 15004 12285 1.8e+01
5 3.6e-01 3.3e+08 65835 21031 16768 2.0e+01

for buck DC-DC converters have been widely studied. The
typical software based approach (e.g., see [22]) is to obntr

with a MOSFET, i.e., a metal-oxide-semiconductor eld-
effect transistor [24]) with a microcontroller.

In the following experiments, we x = jxj = 20 and
we have that; = juj = i. Finally, K; is an intermediate
output of the QKS tool described in [6].

For each i, we run KSS so as to compu&ynthesizé i;

vi; ) (see Algorithm 1), beingv;; b K= K;(x;u). In the

following, we will call hwvy;; byj; @:05 i byi, with v 2
Vi;bi 2 B, the output of functiorSolveFunctionalEQ i; vi;
k). Moreover, we calf y;;:::;f;; : B" ! B thei boolean

functions such thalv;i ; b K= fji (x). All our experiments
have been carried out on a 3.0 GHz Intel hyperthreaded
Quad Core Linux PC with 8 GB of RAM.

B. KSS Performance

In this section, we will show the performance (in terms
of computation time, memory, and output size) of the al-

We implemented our synthesis algorithm in C program-dorithms discussed in Section VI. Table | show our experi-
ming language, using the CUDD (Colorado University De-mental results. Theth row in Table I corresponds to exper-
cision Diagram [19]) package for OBDD based computa-iments running KSS so as to compugnthesize i;vi; b).
tions and BLIF (Berkeley Logic Interchange Format [20]) Columns in Table | have the following meaning. Column
les to represent input OBDDs. We name the resulting toolShows the number of action variableg (note thafxj = 20

KSS (Kontrol Software Synthesi2eKSS is part of a more

on all our experiments). Colum@PU shows the computa-

thesizer[6]).

A. Experimental Settings

usage for KSS (in bytes). Columij shows the number
of nodes of the COBDD representation figr (x;u), i.e.,
iV, j. ColumnjFUnsh j shows the number of nodes of the

on given COBDDs ;;:::; 5 such that for alli 2 [5] ; ing nodes sharing among such COBDDs. Note that we do
represents the mgk; (x;u) for a buck DC/DC converter consider ngdes sharing inside edgh separately. That is,
with i inputs jEUshj =" 1) jW, | is the size of a trivial implemen-

a mixed-mode analog circuit converting the DC input voltagea stand-alone C function. ColunjBwj shows the size of
(Vi in Figure 4) to a desired DC output voltageo(in  the control software generated by KSS, i.e., the number of

off-chip to scale down the typical laptop battery voltag2-(1 ering also nodes sharing among such COBDDs. That is,
24) to the just few volts needed by the laptop processor, (e.gjSwj = |[ }:1 W, j is the number of C code blocks generated
see [22]) as well as on-chip to suppdynamic Voltage by lines 6-8 of functionGenerateCCodén Algorithm 3.

and Frequency Scalin@VFS) in multicore processors (e.g., Finally, Column% shows the gain percentage we obtain by
see [23]). Because of its widespread use, control schema®nsidering nodes sharing among COBDD representations



Pow7) 100,

(4]

From Table | we can see that, in less than 1 second

and within 350 MB of RAM we are able to synthesize the

control software for the multi-input buck with=75 action
variables, starting from a COBDD representatiorKofwith

(5]

about6:6 10* nodes. The control software we synthesize [6]

in such a case has abolif7 10 lines of code, whilst

a control software not taking into account COBDD nodes

sharing would have had abotl 10" lines of code. Thus,
we obtain a20% gain towards a trivial implementation.

IX. CONCLUSION AND FUTURE WORK

(7]

(8]

In this paper, we presented an algorithm which, starting

from a boolean relatioK representing the set of implemen-
tations meeting the given system speci cations, generates

correct-by-construction C code implementikg This en-
tails nding boolean function$ such thatk (x; F (x)) =1

holds, and then implement suéh WCET for the generated

control software is linear linear inr, beingr the number

of functions inF andn = jxj. Furthermore, we formally

proved that our algorithm is correct.

We implemented our algorithm in a tool named KSS.

9]

(10]

Given our algorithm properties explained above, by using
KSS it is possible to synthesize correct-by-construction

control software, provided tha€ is provably correct with
respect to initial formal speci cations. This is the cas€6h

(11]

thus this methodology, e.g., allows to synthesize correct-
by-construction control software starting from formal spe [12]

i cations for DTLHSs. We have shown feasibility of our

proposed approach by presenting experimental results on
using it to synthesize C controllers for a multi-input buck [13]

DC-DC converter.

The WCET of the resulting control software may be too

high for some systems in whichr is high, or for which

the control software has to provide actions with an high

(14]

frequency. In order to speed-up the WCET, a natural possible

future research direction is to investigate how to parakel
the generated control software.
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