
Synthesizing Control Software from Boolean Relations

Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci
Department of Computer Science

Sapienza University of Rome
Via Salaria 113, 00198 Rome, Italy

Email: {mari,melatti,salvo,tronci}@di.uniroma1.it

Abstract—Many software as well digital hardware automatic
synthesis methods define the set of implementations meeting
the given system specifications with a boolean relationK. In
such a context a fundamental step in the software (hardware)
synthesis process is finding effective solutions to the functional
equation defined byK. This entails finding a (set of) boolean
function(s) F (typically represented using OBDDs, Ordered
Binary Decision Diagrams) such that: 1) for all x for which K
is satisfiable,K(x, F (x)) = 1 holds; 2) the implementation of
F is efficient with respect to given implementation parameters
such as code size or execution time. While this problem has
been widely studied in digital hardware synthesis, little has
been done in a software synthesis context. Unfortunately, the
approaches developed for hardware synthesis cannot be directly
used in a software context. This motivates investigation of
effective methods to solve the above problem whenF has to
be implemented with software. In this paper, we present an
algorithm that, from an OBDD representation for K, generates
a C code implementation forF that has the same size as the
OBDD for F and a worst case execution time linear innr,
being n = |x| the number of input arguments for functions in
F and r the number of functions in F . Moreover, a formal
proof of the proposed algorithm correctness is also shown.
Finally, we present experimental results showing effectiveness
of the proposed algorithm.

Keywords-Control Software Synthesis; Embedded Systems;
Model Checking

I. I NTRODUCTION

Many software as well digital hardware automatic syn-
thesis methods define the set of implementations meeting
the given system specifications with a boolean relationK.
Given an n-bits (resp.,r-bits) binary encodingof states
(resp.,actions) of the system as it is usually done in Model
Checking [7] (see Sect. III-B), such relation typically takes
as input then-bits encoding of a statex and ther-bits
encoding of a proposed action to be performedu, and returns
true (i.e., 1) if and only if the system specifications are met
when performing actionu in statex. In such a context, a
fundamental step in the software (hardware) synthesis pro-
cess is finding effective solutions to the functional equation
defined byK, i.e.,K(x, u) = 1. This entails finding a tuple
of boolean functionsF = 〈f1, . . . , fr〉 (typically represented
using OBDDs, Ordered Binary Decision Diagrams[2])
such that 1) for allx for which K is satisfiable (i.e., it
enables at least one action),K(x, F (x)) = 1 holds, and 2)
the implementation ofF is efficient with respect to given

implementation parameters such as code size or execution
time.

While this problem has been widely studied in digital
hardware synthesis [3][4], little has been done in a software
synthesis context. This is not surprising since software
synthesis from formal specifications is still in its infancy.
Unfortunately the approaches developed for hardware syn-
thesis cannot be directly used in a software context. In
fact, synthesis methods targeting a hardware implementation
typically aim at minimizing the number of digital gates and
of hierarchy levels. Since in the same hierarchy level gates
output computation isparallel, the hardware implementation
WCET (Worst Case Execution Time) is given by the number
of levels. On the other hand, a software implementation will
have tosequentiallycompute the gates outputs. This implies
that the software implementation WCET is the number of
gates used, while a synthesis method targeting a software
implementation may obtain a better WCET. This motivates
investigation of effective methods to solve the above problem
whenF has to be implemented with software.

A. Our Contribution

In this paper, we present an algorithm that, from an
OBDD representation forK, effectively generates a C code
implementation forK that has the same size as the OBDD
for F and a WCET linear in linear innr, beingn = |x| the
number of bits encoding statex andr = |u| the number of
bits encoding actionu. This is done in two steps:

1) from an OBDD representation forK we effectively
compute an OBDD representation forF , following the
lines of [5];

2) we generate a C code implementation forF with the
above described properties of code size and WCET.

We formally prove both steps 1 and 2 to be correct.
This allows us to synthesize correct-by-constructioncon-

trol software, provided thatK is provably correct with
respect to initial formal specifications. This is the case
of [6], where an algorithm is presented to synthesizeK
starting from a) the formal specification of a Discrete-Time
Linear Hybrid System (DTLHS in the following) modeling
the system (plant) to be controlled, b) its system level
formal specifications (specifying the goal to be reached
and the safe states to be traversed in order to reach it)

Figure 1. Control Software Synthesis Flow

and c) the quantization schema (i.e., the number of bits
available for analog-to-digital conversion). The framework
in [6] is depicted in Figure 1. With respect to Figure 1, the
approach proposed in this paper may be used to perform step
3. Thus, this methodology allows a correct-by-construction
control software to be synthesized, starting from formal
specifications for DTLHSs.

Note that the problem of solving the functional equation
K(x, F (x)) = 1 with respect toF is trivially decidable,
since there are finitely manyF . However, trying to explicitly
enumerate allF requires timeΩ(2r2

n

). By using OBDD-
based computations, we are able to computeF in time
O(r2n) in the worst case. However, in many interesting
cases OBDD sizes and computations are much lower than
the theoretical worst case (e.g., in Model Checking applica-
tions, see [7]).

Furthermore, once the OBDD representation forF has
been computed, a trivial implementation ofF could use
a look-up table in RAM. While this solution would yield
a better WCET, it would imply aΩ(r2n) RAM usage.
Unfortunately, implementations forF in real-world cases are
typically implemented on microcontrollers (this is the case,
e.g., forembedded systems). Since microcontrollers usually
have a small RAM, the look-up table based solution is not
feasible in many interesting cases. The approach we present
here will rely on OBDDs compression to overcome such
obstruction.

Moreover, F : B
n → B

r is composed byr boolean
functions, thus it is represented byr OBDDs. Such OBDDs
typically share nodes among them. If a trivial implementa-
tion of F in C code is used, i.e., each OBDD is translated as
a stand-alone C function, such inter-OBDDs nodes sharing

will not be exploited. In our approach, we exploit inter-
OBDDs nodes sharing, thus the control software we generate
fully takes advantage of OBDDs compression.

Finally, we present experimental results showing effec-
tiveness of the proposed algorithm. As an example, in less
than 1 second and within 350 MB of RAM we are able
to synthesize the control software for a functionK of 25
boolean variables, divided inn = 20 state variables and
r = 5 action variables, represented by an OBDD with
about6.6× 104 nodes. SuchK represents the set of correct
implementations for a real-world system, namely a multi-
input buck DC/DC converter [8], obtained as described
in [6]. The control software we synthesize in such a case
has about1.7× 104 lines of code, whilst a control software
not taking into account OBDDs nodes sharing would have
had about2.1 × 104 lines of code. Thus, we obtain a20%
gain towards a trivial implementation.

This paper is organized as follows. In Section III we
give the basic notions to understand our approach. In Sec-
tion IV we formally define the problem we want to solve.
In Section V we give definition and main properties of
COBDDs (i.e., Complemented edges OBDDs), on which
our approach is based. Section VI describes the algorithms
our approach consists of, whilst Section VII proves it to be
correct. Section VIII presents experimental results showing
effectiveness of the proposed approach. Finally, Section IX
presents the concluding remarks and gives some ideas for
future work.

II. RELATED WORK

This paper is an extended version of [1]. With respect
to [1], this paper provides more details in the introduction

and in the related work description, extends basic defini-
tions and algorithms descriptions, shows omitted proofs for
theorems and provides a revised version of the experiments.

Synthesis of boolean functionsF satisfying a given
boolean relationK in a way such thatK(x, F (x)) = 1 is
also addressed in [3]. However, [3] targets a hardware set-
ting, whereas we are interested in a software implementation
for F . Due to structural differences between hardware and
software based implementations (see the discussion in Sec-
tion I), the method in [3] is not directly applicable here. An
OBDD-based method for synthesis of boolean (reversible)
functions is presented in [4] (see also citations thereof).
Again, the method in [4] targets a hardware implementation,
thus it is not applicable here.

An algorithm for the synthesis of C control software is
also presented in [9]. However, in [9] the starting point
is a (multioutput) boolean function, rather than a boolean
relation. That is to say, the starting point isF rather thanK
(with respect to the discussion in Section I-A, it is supposed
that step 1 has already been performed). Moreover, the
algorithm in [9], though OBDD-based, does not generate
a software with the same size of the OBDDs forF , nor
an estimation of its WCET (in the sense explained in
Section I) is provided. Finally, an implementation of the
algorithm in [9] is not provided, thus we cannot make a
direct experimental comparison with our method.

Synthesis of control software is also addressed in [10],
where the focus is on the generation of control protocols.
Such method cannot be applied in our context, where we
need a C software implementation.

In [6], an algorithm is presented which, starting from
a formal specification of a DTLHS, synthesizes a correct-
by-construction boolean relationK, and then a correct-by-
construction control software implementation forK (see
Figure 1). However, in [6] the implementation ofK is
not described in detail. Furthermore, the implementation
synthesis described in [6] has not the same size of the OBDD
for F , i.e., it does not exploit OBDD nodes sharing.

Many other works in the literature has the goal of syn-
thesizing controllers as boolean relationsK, under very
different assumptions for the target dynamic system to be
controlled. Such works do not deal with the effective imple-
mentation ofK, thus they may use the approach described
here in order to have an effective software implementation
of K. As an example, the following works may be cited
as closer to ours. In [11] controllers are generated starting
from finite-state nondeterministic dynamic systems (arising
from planning problems). In [12] a method to synthesize
non-optimal (but smaller in size) controllers is presented.

In [5], an algorithm is presented which computes boolean
functionsF satisfying a given boolean relationK in a way
such thatK(x, F (x)) = 1. This approach is very similar
to ours. However [5] does not generate the C code control
software and it does not exploit OBDD nodes sharing.

Finally, we note that our work lies in the wider area of
software synthesis, which has been widely studied since a
long time in many contexts. For a survey on such (non-
control) software synthesis works, see [13][14].

III. B ASIC DEFINITIONS

In the following, we denote withB = {0, 1} the boolean
domain, where0 stands forfalse and 1 for true. We will
denote boolean functionsf : B

n → B with boolean
expressions on boolean variables involving+ (logical OR),
· (logical AND, usually omitted thusxy = x · y), ¯ (log-
ical complementation) and⊕ (logical XOR). We will also
denote vectors of boolean variables in boldface, e.g.,x =
〈x1, . . . , xn〉. Moreover, we also denote withf |xi=g(x) the
boolean functionf(x1, . . . , xi−1, g(x), xi+1, . . . , xn) and
with ∃xi f(x) the boolean functionf |xi=0(x)+f |xi=1(x).

Finally, we denote with[n] the set{1, . . . , n}.

A. Most General Optimal Controllers

A Labeled Transition System(LTS) is a tuple S =
(S,A, T) whereS is a finite set ofstates, A is a finite set of
actions, andT is the (possibly non-deterministic)transition
relation of S. A controller for an LTS S is a function
K : S×A→ B enabling actions in a given state. We denote
with Dom(K) the set of states for which a control action
is enabled. An LTScontrol problemis a tripleP = (S, I,
G), whereS is an LTS andI,G ⊆ S. A controllerK for
S is a strong solutionto P if and only if it drives each
initial states ∈ I in a goal statet ∈ G, notwithstanding
nondeterminism ofS. A strong solutionK∗ to P is optimal
if and only if it minimizes path lengths. An optimal strong
solutionK∗ to P is themost general optimal controller(we
call such solution anmgo) if and only if in each state it
enables all actions enabled by other optimal controllers. For
more formal definitions of such concepts, see [15].

Efficient algorithms, typically reminiscent of early work
on minimum paths by Dijkstra [16], to compute controllers
starting from suitable (nondeterministic) LTS control prob-
lems have been proposed in the literature: e.g., [11] presents
an algorithm to generate mgos, while [12] show an algorithm
for non-optimal (but smaller in size) controllers. Once a
controllerK has been computed, solving and implementing
the functional equationK(x,u) = 1 allows a correct-by-
construction control software to be synthesized.

B. Binary Encoding for States and Actions

Vectors of boolean valuesx ∈ B
n (resp.,u ∈ B

r) may
be used to represent statess ∈ S (resp., actionsa ∈ A)
of an LTS S = (S,A, T) (and thus of a controller for
S) as follows. Letn = ⌊log2(|S|)⌋ + 1. Then,n boolean
values (bits) may be used to represent anys ∈ S. As an
example, in Model Checking applications [7] an order on
S = {s1, . . . , sm} is fixed (let s1 < . . . < sm be such
order), and then the binary encodingη : S → B

n is defined

asη(si) = b such that
∑n

j=1 2
j−1bj = i− 1. An analogous

construction may be applied to actions.

C. OBDD Representation for Boolean Functions

A Binary Decision Diagram(BDD) R is a rooted directed
acyclic graph (DAG) with the following properties. Each
R nodev is labeled either with a boolean variablevar(v)
(internal node) or with a boolean constantval(v) ∈ B

(terminal node). EachR internal nodev has exactly two
children, labeled withhigh(v) and low(v). Let x1, . . . , xn

be the boolean variables labelingR internal nodes. Each
terminal nodev representsfv(x) = val(v). Each internal
node v representsfv(x) = xifhigh(v)(x) + x̄iflow(v)(x),
being xi = var(v). An Ordered BDD(OBDD) is a BDD
where, on each path from the root to a terminal node, the
variables labeling each internal node must follow the same
ordering.

IV. SOLVING A BOOLEAN FUNCTIONAL EQUATION

Let K(x1, . . . , xn, u1, . . . , ur) be the mgo for a given
control problem P = (S, I, G). We want to solve
the boolean functional equationK(x,u) = 1 with re-
spect to variablesu, that is we want to obtain boolean
functions f1, . . . , fr such thatK(x, f1(x), . . . , fr(x)) =
K|u1=f1(x),...,ur=fr(x)(x,u) = 1. This problem may be
solved in different ways, depending on thetarget imple-
mentation(hardware or software) for functionsfi. In both
cases, it is crucial to be able to bound the WCET (Worst
Case Execution Time) of the obtained controller. In fact,
controllers must work in an endless closed loop with the
systemS (plant) they control. This implies that, everyT
seconds (sampling time), the controller has to determine the
actions to be sent toS. Thus, in order for the entire system
(plant + control software) to properly work, the controller
WCET upper bound must be at mostT .

In [3], f1, . . . , fr are generated in order to optimize
a hardware implementation. In this paper, we focus on
software implementations forfi (control software). As it
is discussed in Section I, simply translating an hardware
implementation into a software implementation would re-
sult in a too high WCET. Thus, a method directly tar-
geting software is needed. An easy solution would be
to set up, for a given statex, a SAT problem instance
C = CK1, . . . , CKt, c1, . . . , cn, where CK1 ∧ . . . ∧ CKt

is equisatisfiable toK and each clauseci is either xi (if
xi is 1) or x̄i (otherwise). ThenC may be solved using a
SAT solver, and the values assigned tou in the computed
satisfying assignment may be returned as the action to be
taken. However, it would be hard to estimate a WCET for
such an implementation. The method we propose in this
paper overcomes such obstructions by achieving a WCET
proportional torn.

 u0

 u1

 x0

 x1

 x2

K

0x17

0x120x16

0x10

0x11

0x15

1

0xf

0xe

0x13 0x14

Figure 2. An mgo example

V. OBDDS WITH COMPLEMENTED EDGES

In this section, we introduce OBDDs with complemented
edges (COBDDs, Definition 1), which were first presented
in [17][18]. Intuitively, they are OBDDs where else edges
(i.e., edges of type(v, low(v))) may be complemented. Then
edges (i.e., edges of type(v, high(v))) complementation
is not allowed to retain canonicity. Edge complementation
usually reduce resources usage, both in terms of CPU and
memory.

Definition 1. An OBDD with complemented edges(COBDD
in the following) is a tupleρ = (V, V , 1, var, low, high,
flip) with the following properties:

1) V = {x1, . . . , xn} is a finite ordered set of boolean
variables;

2) V is a finite set ofnodes;
3) 1 ∈ V is the terminal node of ρ, corresponding to

the boolean constant1 (non-terminal nodes are called
internal);

4) var, low, high, flip are functions defined on internal
nodes, namely:

• var : V \ {1} → V assigns to each internal node
a boolean variable inV

• high[low] : V \ {1} → V assigns to each internal
nodev a high child [low child] (or then child[else
child]), representing the case in whichvar(v) = 1
[var(v) = 0]

• flip : V \ {1} → B assigns to each internal node
v a boolean value; namely, ifflip(v) = 1 then the
else child has to be complemented, otherwise it is
regular (i.e., non-complemented);

5) for each internal nodev, var(v) < var(high(v)) and
var(v) < var(low(v)).

A. COBDDs Associated Multigraphs

We associate to a COBDDρ = (V, V , 1, var, low, high,
flip) a labeled directed multigraphG(ρ) = (V,E) such that
V is the same set of nodes ofρ and there is an edge(v, w) ∈
E if and only if w is a child ofv. Moreover, each edgee =
(v, w) ∈ E has a typetype(e), indicating if e is a then edge
(i.e., if w is a then child ofv), a regular else edge(i.e., if w
is an else child ofv with flip(v) = 0), or a complemented
else edge(i.e., if w is an else child ofv with flip(v) = 1).
Figure 2 shows an example of a COBDD depicted via its
associated multigraph, where edges are directed downwards.
Moreover, in Figure 2 then edges are solid lines, regular
else edges are dashed lines and complemented else edges
are dotted lines.

The graph associated to a given COBDDρ = (V, V , 1,
var, low, high, flip) may be seen as a forest with multiple
rooted multigraphs. In order to select one root vertex and
thus one rooted multigraph, we define theCOBDD restricted
to v ∈ V as the COBDDρv = (V, Vv, 1, var, low, high,
flip) such thatVv = {w ∈ V | there exists a path fromv to
w in G(ρ)} (note thatv ∈ Vv).

B. COBDDs Properties

For a given COBDDρ = (V, V , 1, var, low, high, flip)
the following properties follow from definitions given above:

1) G(ρ) is a rooted directed acyclic (multi)graph (DAG);
2) each path inG(ρ) starting from an internal node ends

in 1;
3) let v1, . . . , vk be a path inG(ρ), thenvar(v1) < . . . <

var(vk).
We define theheight of a nodev in a COBDDρ (notation

heightρ(v), or simply height(v) if ρ is understood) as the
height of the DAGG(ρv), i.e., the length of the longest path
from v to 1 in G(ρ).

C. Semantics of a COBDD

In Definition 2, we define the semanticsJ·K of each node
v of a given COBDDρ as the boolean function represented
by v, given the parityb of complemented edges seen on the
path from a root tov.

Definition 2. Let ρ = (V, V , 1, var, low, high, flip)
be a COBDD. Thesemantics of the terminal node1 with
respect to a flipping bitb is a boolean function defined as
J1, bKρ := b̄. The semantics of an internal nodev ∈ V with
respect to a flipping bitb is a boolean function defined as
Jv, bKρ := xiJhigh(v), bKρ + x̄iJlow(v), b ⊕ flip(v)Kρ, being
xi = var(v). Whenρ is understood, we will writeJ·K instead
of J·Kρ.

Note that the semantics of a node of a COBDDρ is
a function of variables inV and of an additional boolean
variable b. Thus, on each nodetwo boolean functions on
V are defined (one for each value ofb). It can be shown
(see [15]) that such boolean functions are complementary.

Example 1. Letρ be the COBDD depicted in Figure 2. If we
pick node0xe we haveJ0xe, bK = x2J1, bK+ x̄2J1, b⊕ 1K =
x2b̄+ x̄2b = x2 ⊕ b.

D. Reduced COBDDs and COBDDs Canonicity

Two COBDDs areisomorphicif and only if there exists a
mapping from nodes to nodes preserving attributesvar, flip,
high and low. A COBDD is calledreducedif and only if it
contains no vertexv with low(v) = high(v) ∧ flip(v) = 0,
nor does it contains distinct verticesv andv′ such thatρv and
ρv′ are isomorphic. Note that, differently from OBDDs, it is
possible thathigh(v) = low(v) for somev ∈ V , provided
that flip(v) = 1 (e.g., see nodes0xf and0xe in Figure 2).

Theorem 1 states that reduced COBDDs are acanonical
representation for boolean functions (see [17][18]). As a
consequence, software packages implementing COBDDs op-
erations only deal with reduced COBDDs, since this allows
very fast equality tests between COBDDs (it is sufficient
to check if the (root node, flipping bit) pair is the same).
Accordingly, in the following we will deal with reduced
COBDDs only.

Theorem 1. Let f : Bn → B be a boolean function. Then
there exists a reduced COBDDρ = (V, V , 1, var, low,
high, flip), a nodev ∈ V and a flipping bitb ∈ B such that
Jv, bK = f(x). Moreover, letρ = (V, V , 1, var, low, high,
flip) be a reduced COBDD, letv1, v2 ∈ V be nodes and
b1, b2 ∈ B be flipping bits. ThenJv1, b1K = Jv2, b2K if and
only if v1 = v2 ∧ b1 = b2.

VI. SYNTHESIS OFC CODE FROM A COBDD

Let K(x1, . . . , xn, u1, . . . , ur) be a controller for a given
control problem. Letρ = (V, V , 1, var, low, high, flip)
be a COBDD such that there existv ∈ V , b ∈ B such
that Jv, bK = K(x1, . . . , xn, u1, . . . , ur). Thus,V = X ·∪
U = {x1, . . . , xn} ·∪{u1, . . . , ur} (we denote with ·∪ the
disjoint union operator, thusX ∩ U = ∅). We will call
variablesxi ∈ X asstate variablesand variablesuj ∈ U as
action variables.

We want to solve the boolean functional equation problem
introduced in Sect. IV targeting asoftwareimplementation.
We do this by using a COBDD representing all our boolean
functions. This allows us to exploit COBDD nodes sharing.
This results in an improvement for the method in [5], which
targets a software implementation but which does not exploit
sharing. Finally, we also synthesize the software (i.e., C
code) implementation forf1, . . . , fr, which is not considered
in [5]. This allows us to finally have acontrol softwarefor
the starting LTS. IfK is an mgo, this results in anoptimal
control softwarefor the starting LTS.

A. Synthesis Algorithm: Overview

Our methodSynthesizetakes as inputρ, v and b such
that Jv, bK = K(x,u). Then, it returns as output a C
functionvoid K(int *x, int *u) with the following

property: if, before a call toK, ∀i x[i−1]= xi holds (array
indexes in C language begin from0) with x ∈ Dom(K), and
after the call toK, ∀i u[i−1]= ui holds, thenK(x,u) = 1.
Moreover, the WCET of functionK is O(nr).

Note that our methodSynthesizeprovides an effective
implementationof the controllerK, i.e., a C function which
takes as input the current state of the LTS and outputs the
action to be taken. Thus,K is indeed a control software.

Function Synthesizeis organized in two phases. First,
starting fromρ, v and b (thus fromK(x,u)), we generate
COBDD nodesv1, . . . , vr and flipping bitsb1, . . . , br for
boolean functionsf1, . . . , fr such that eachfi = Jvi, biK
takes as input the state bit vectorx and computes thei-th
bit ui of an output action bit vectoru, whereK(x,u) = 1,
provided thatx ∈ Dom(K). This computation is carried
out in functionSolveFunctionalEq. Second,f1, . . . , fr are
translated inside functionvoid K(int *x, int *u).
This step is performed by maintaining the structure of the
COBDD nodes representingf1, . . . , fr. This allows us to
exploit COBDD nodes sharing in the generated software.
This phase is performed by functionGenerateCCode.

Thus, functionSynthesizeis organized as in Algorithm 1.
Correctness for functionSynthesizeis stated in Theorem 6.

Algorithm 1 Translating COBDDs to a C function
Require: COBDD ρ, nodev, booleanb
Ensure: Synthesize(ρ, v, b):

1: 〈v1, b1, . . . , vr, br〉 ← SolveFunctionalEq(ρ, v, b)
2: GenerateCCode(ρ, v1, b1, . . . , vr, br)

B. Synthesis Algorithm: Solving a Functional Equation

In this phase, starting fromρ, v andb (thus fromJv, bK =
K(x,u)), we compute functionsf1, . . . , fr such that for all
x ∈ Dom(K), K(x, f1(x), . . . , fr(x)) = 1.

To this aim, we follow an approach similar to the
one presented in [5], which is reminiscent of early work
on minimum paths by Dijkstra. Namely, we compute
fi using f1, . . . , fi−1, in the following way: fi(x) =
∃ui+1, . . . , un K(x, f1(x), . . . , fi−1(x), 1, ui+1, . . . , un).
Thus, functionSolveFunctionalEq(ρ, v, b) computes and re-
turns 〈v1, b1, . . . , vr, br〉 such that for alli ∈ [r], Jvi, biK =
fi(x). This is effectively performed by Algorithm 2, where
we use the following COBDDs manipulation functions:

• COBDD APP (instantiation) such that 〈vAPP ,
bAPP 〉 = COBDD APP(xi1 , . . . , xik ,
v1, b1, . . . , vk, bk, v, b) if and only if
JvAPP , bAPP K = Jv, bK|xi1

=Jv1,b1K,...,xik
=Jvk,bkK;

• COBDD EX (existential quantifier elimination) such
that 〈vEX , bEX〉 = COBDD EX(xi1 , . . . , xik , v, b)
if and only if JvEX , bEXK = ∃xi1 , . . . , xik Jv, bK.

We note that efficient (i.e., at mostO(|V | log |V |)) al-
gorithms [17][18] exist to compute the above defined func-
tions. Moreover, the above defined functions may create new

COBDD nodes. We assume that such functions also properly
updateV , var, low, high, flip inside COBDDρ (1 andV
are not affected).

Algorithm 2 Solving a boolean functional equation
Require: COBDD ρ, nodev, booleanb
Ensure: SolveFunctionalEq(ρ, v, b):

1: for all i ∈ [r] do
2: Jvi, biK ← COBDD EX(ui+1, . . . , un,

COBDD APP(u1, . . . , ui, v1, b1, . . . , vi−1, bi−1,
1, 0, v, b))

3: return 〈v1, b1, . . . , vr, br〉

Correctness for functionSolveFunctionalEqis proved in
Lemma 3.

C. Synthesis Algorithm: Generating C Code

In this phase, starting from COBDD nodesv1, . . . , vr and
flipping bits b1, . . . , br for functions f1, . . . , fr generated
in the first phase, we generate two C functions: i)void
K(int *x, int *u), which is the required output func-
tion for our methodSynthesize; ii) int K_bits(int *x,
int action), which is an auxiliary function called by
K. A call to K_bits(x, i) returnsfi(x), beingx[j −
1]= xj for all j ∈ [n]. This phase is detailed in Algs. 3
(function GenerateCCode) and 4 (functionTranslate). In
such algorithms we suppose to be able to print a nodev,
e.g., by printing the exadecimal value of a pointer tov.

Algorithm 3 Generating C functions
Require: COBDD ρ, v1, . . . , vr, boolean valuesb1, . . . , br
Ensure: GenerateCCode(ρ, v1, b1, . . . , vr, br):

1: print “int K_bits(int *x, int action) {
int ret_b; switch(action) {”

2: for all i ∈ [r] do
3: print “case ”, i− 1, “:”
4: print “ret_b = ”, b̄i, “; goto L_”, vi,“;”
5: print “}” /* end of the switch block */
6: W ← ∅

7: for all i ∈ [r] do
8: W ←Translate(ρ, vi,W)
9: print “} K(int* x, int* u) {int i;”

10: print “ for(i=0; i<”,r,“; i++)”
11: print “ u[i] = K_bits(x, i);}”

Details of FunctionGenerateCCode(Algorithm 3):
Given inputsρ, v1, b1, . . . , vr, br (output by SolveFunc-
tionalEq), Algorithm 3 works as follows. First, function
int K_bits(int *x, int action) is generated. If
x[j − 1]= xj for all j ∈ [n], the call K_bits(x, i)
has to returnfi(x). In order to do this, the graphG(ρvi

)

is traversed by taking, in each nodev, the then edge if
x[j−1] = 1 (with j such thatvar(v) = xj) and the else edge

otherwise. When node1 is reached, then1 is returned if and
only if the integer sumc+ bi is even, beingc the number of
complemented else edges traversed. Note that parity ofc+bi
may be maintained by initializing a C variableret_b to b̄i,
then complementingret_b (i.e., by performing aret_b
= !ret_b statement) when a complemented else edge is
traversed, and finally returningret_b.

This mechanism is implemented inside functionK_bits
by properly translating each COBDD nodeṽ ∈

⋃r
i=1 Vvi

in
a C code block. Each block is labeled with a unique label
depending oñv, and maintains in variableret_b the current
parity of c+ bi as described above. This is done by function
Translate, called on line 8 and detailed in Algorithm 4.

Thus, the initial part of functionK_bits consists of a
switch block (generated in lines 1–5 of Algorithm 3),
which initializesret_b to b̄i and then jumps to the label
corresponding to nodevi. Then, the C code blocks cor-
responding to COBDD nodes are generated in lines 6–8
of Algorithm 3, by callingr times functionTranslate(see
Algorithm 4) with parametersv1, . . . , vr. Note thatW main-
tains the already translated COBDD nodes. Since function
Translateonly translates nodes not inW , this allows us to
exploit sharing not only inside eachG(ρvi

), but also inside
G(ρv1

), . . . , G(ρvr).
Finally, functionK is generated in lines 9–11. Function

K simply consists in afor loop filling each entryu[i]
of the output arrayu with the boolean values returned by
K_bits(x, i). Correctness of functionGenerateCCode
is proved in Lemma 5.

Algorithm 4 COBDD nodes translation
Require: COBDD ρ, nodev, nodes setW
Ensure: Translate(ρ, v,W):

1: if v ∈W then return W
2: W ←W ∪ {v}
3: print “L_”, v, “:”
4: if v = 1 then
5: print “return ret_b;”
6: else
7: let i be such thatvar(v) = xi

8: print “if(x[”,i− 1,“]==1)goto L_”, high(v)
9: if flip(v) then

10: print “else {ret_b = !ret_b;’’
11: print “goto L_”, low(v),“;}”
12: else
13: print “else goto L_”, low(v)
14: W ←Translate(ρ, high(v),W)
15: W ←Translate(ρ, low(v),W)
16: return W

Details of FunctionTranslate(Algorithm 4): Given in-
putsρ, v,W , Algorithm 4 performs a recursive graph traver-
sal ofG(ρv) as follows.

The C code block for internal nodev is generated in
lines 3 and 7–13. The block consists of a labelL_v: and
an if-then-else C construct. Note that labelL_v uni-
vocally identifies the C code block related to nodev. This
may be implemented by printing the exadecimal value of a
pointer tov.

The if-then-else C construct is generated so as to
traverse nodev in graph G(ρv) in the following way. In
line 8 the checkx[i−1]= 1 is generated, beingi such that
var(v) = xi. The code to take the then edge ofv is also gen-
erated. Namely, it is sufficient to generate agoto statement
to the C code block related to nodehigh(v). In lines 10–11
and 13 the code to take the else edge is generated, in the case
x[i− 1]= 1 is false. In this case, if the else edge is com-
plemented, i.e.,flip(v) holds (lines 10–11), it is necessary
to complementret_b and then perform agoto statement
to the C code block related to nodelow(v) (lines 10–11).
Otherwise, it is sufficient to generate agoto statement to
the C code block related to nodelow(v) (line 13).

Thus, the block generated for an internal nodev, for
properi, l andh, has one of the following forms, depending
on flip(v):

• L_v: if (x[i − 1]) goto L_h; else goto
L_l;

• L_v: if (x[i−1]) goto L_h; else {ret_b
= !ret_b; goto L_l;}.

There are two base cases for the recursion of function
Translate:

• v ∈W (line 1), i.e.,v has already been translated into
a C code block as above. In this case, the set of visited
COBDD nodesW is directly returned (line 1) without
generating any C code. This allows us to retain COBDD
node sharing;

• v = 1 (line 4), i.e., the terminal node1 has been
reached. In this case, the C code block to be generated
is simply L_1: return ret_b;. Note that such a
block will be generated only once.

In all other cases, functionTranslateends with the recur-
sive calls on the then and else edges (lines 14–15). Note
that the visited nodes setW passed to the second recursive
call is the result of the first recursive call. Correctness of
function Translateis proved in Lemma 5.

D. An Example of Translation

Consider the COBDDρ shown in Figure 2. Withinρ,
consider mgoK(x0, x1, x2, u0, u1) = J0x17, 1K. By
applying SolveFunctionalEq, we obtainf1(x0, x1, x2) =
J0x15, 1K and f2(x0, x1, x2) = J0x10, 1K. Note that0xe
is shared betweenG(ρ0x15) andG(ρ0x10). Finally, by calling
GenerateCCode(see Algorithm 3) onf1, f2, we have the C
code in Figure 3.

i n t K_bits(i n t *x, i n t action) {
i n t ret_b;
sw i tch(action) {

case 0: ret_b = 0; goto L_0x15;
case 1: ret_b = 0; goto L_0x10;

}
L_0x15:

i f (x[0] == 1) goto L_0x13;
e l s e { ret_b = !ret_b; goto L_0x14;}

L_0x13:
i f (x[1] == 1) goto L_0xe;
e l s e { ret_b = !ret_b; goto L_1; }

L_0xe:
i f (x[2] == 1) goto L_1;
e l s e { ret_b = !ret_b; goto L_1; }

L_0x14:
i f (x[1] == 1) goto L_0xe;
e l s e goto L_1;

L_0x10:
i f (x[0] == 1) goto L_0xe;
e l s e { ret_b = !ret_b; goto L_0xf; }

L_0xf:
i f (x[1] == 1) goto L_0xe;
e l s e { ret_b = !ret_b; goto L_0xe; }

L_1:
re turn ret_b;

}

vo id K(i n t *x, i n t *u) {
i n t i;
f o r (i = 0; i < 2; i++)
u[i] = K_bits(x, i);

}

Figure 3. C code for the mgo in Figure 2 as generated bySynthesize

VII. T RANSLATION PROOF OFCORRECTNESS

In this section, we prove the correctness of our approach
(Theorem 6). That is, we show that the functionK we gener-
ate indeed implements the given controllerK, thus resulting
in a correct-by-construction control software.

We begin by stating four useful lemmata for our proof.
Lemma 2 is useful to prove Lemma 3, i.e., to prove correct-
ness of functionSolveFunctionalEq.

Lemma 2. Let K : B
n × B

r → B and let
f1, . . . , fr be such that fi(x) = ∃ui+1, . . . , ur

K(x, f1(x), . . . , fi−1(x), 1, ui+1, . . . , ur) for all i ∈ [r].
Then,x ∈ Dom(K) ⇒ K(x, f1(x), . . . , fr(x)) = 1.

Proof: Let x ∈ B
n be such thatx ∈ Dom(K), i.e.,

∃u K(x,u) = 1. We prove the lemma by induction onr.
For r = 1, we havef1(x) = K(x, 1). If f1(x) = 1, we
haveK(x, f1(x)) = K(x, 1) = f1(x) = 1. If f1(x) = 0,
we haveK(x, f1(x)) = K(x, 0), andK(x, 0) = 1 since
x ∈ Dom(K) andK(x, 1) = 0.

Suppose by induction that for all K̃ :
B
n × B

r−1 → B K̃(x, f̃1(x), . . . , f̃r−1(x)) =
1, where for all i ∈ [r − 1] f̃i(x) =

∃ui+1, . . . , ur−1 K̃(x, f̃1(x), . . . , f̃i−1(x), 1, ui+1, . . . , ur−1).
We have that x ∈ Dom(K) implies that either
x ∈ Dom(K|u1=0) or x ∈ Dom(K|u1=1).
Suppose x ∈ Dom(K|u1=1) holds. We
have that K|u1=1(x, f̃2(x), . . . , f̃r(x)) = 1,
where for all i = 2, . . . , r f̃i(x) =
∃ui+1, . . . , ur K|u1=1(x, f̃2(x), . . . , f̃i−1(x), 1, ui+1, . . . , ur).
By construction, we have that f1(x) = 1
and fi(x) = f̃i(x) for i ≥ 2, thus 1 =
K|u1=1(x, f̃2(x), . . . , f̃r(x)) = K(x, f1(x), . . . , fr(x)).
Analogously, ifx /∈ Dom(K|u1=1)∧x ∈ Dom(K|u1=0) we
have thatf1(x) = 0 andfi(x) = f̃i(x) for i ≥ 2, thus1 =
K|u1=0(x, f̃2(x), . . . , f̃r(x)) = K(x, f1(x), . . . , fr(x)).

Lemma 3 states correctness of functionSolveFunctionalEq
of Algorithm 2.

Lemma 3. Let ρ = (V, V , 1, var, low, high, flip) be
a COBDD with V = X ·∪U , v ∈ V be a node,b ∈ B

be a flipping bit. LetJv, bK = K(x,u) and r = |U|.
Then functionSolveFunctionalEq(ρ, v, b) (see Algorithm 2)
outputs nodesv1, . . . , vr and boolean valuesb1, . . . , br such
that for all i ∈ [r] Jvi, biK = fi(x) and x ∈ Dom(K)
impliesK(x, f1(x), . . . , fr(x)) = 1.

Proof: Correctness of functions COBDD APP
and COBDD EX (and lemma hypotheses)
implies that for all i ∈ [r] fi(x) =
∃ui+1, . . . , ur K(x, f1(x), . . . , fi−1(x), 1, ui+1, . . . , ur).
By Lemma 2 we have the thesis.

Let Translatedup be a function that works as function
Translateof Algorithm 4, but that does not take nodes shar-
ing into account. FunctionTranslatedup may be obtained
from function Translateby deleting line 1 (highlighted in
Algorithm 4) and by replacing calls toTranslatein lines 14
and 15 with recursive calls toTranslatedup (with no changes
on parameters). Lemma 4 states correctness of functionTrans-
late dup.

Lemma 4. Let ρ = (V, V , 1, var, low, high, flip) be a
COBDD,v ∈ V be a node,b ∈ B be a flipping bit, andW ⊆
V be a set of nodes. Then functionTranslatedup(ρ, v,W)
generates a sequence of labeled C statementsB1 . . . Bk such
that k ≥ |Vv| and for all w ∈ Vv: 1) label L_w is in Bi for
somei and 2) starting an execution from labelL_w with
∀i ∈ [n] x[i − 1]= xi and ret_b= b̄, if Jw, bK = fw,b

then areturn ret_b; statement is invoked in at most
O(p) steps withret b = fw,b(x) and p = height(w).

Proof: We prove this lemma by induction onv. Let
v = 1, which impliesJv, bK = b̄ andVv = {1}. We have that
function Translatedup(ρ, v,W) generates a single block
B1 (thus k = 1 = |V1|) such thatB1 =L_1: return
ret_b; (lines 3–5 of Algorithm 4). Since by hypothesis
we haveret_b= b̄, and since starting fromB1 the return

statement is invoked inO(1) steps, the base case of the
induction is proved.

Let v be an internal node withvar(v) = xi and let
f(x) = Jv, bK. Since w ∈ Vv if and only if w =
v ∨ w ∈ Vhigh(v) ∨ w ∈ Vlow(v), by induction hypothesis
we only have to prove the thesis forw = v. We have
that f(x) = xiJhigh(v), bK + x̄iJlow(v), b ⊕ flip(v)K, i.e.,
f(x) = xiJhigh(v), bK + x̄iJlow(v), bK if flip(v) = 0 and
f(x) = xiJhigh(v), bK + x̄iJlow(v), b̄K if flip(v) = 1. Since
f(x) = xif |xi=1(x) + x̄if |xi=0(x), by Theorem 1 we
have thatJhigh(v), bK = f |xi=1(x), and thatJlow(v), bK =
f |xi=0(x) if flip(v) = 0 and Jlow(v), b̄K = f |xi=0(x) if
flip(v) = 1.

By lines 3 and 8–13 of Algorithm 4, we have
that function Translatedup(ρ, v,W) generates blocks
BB11 . . . B1hB21 . . . B2l such thatB =L_v: if (x[i −
1] == 1) goto L_high(v); else BE where BE is
either goto L_low(v); if flip(v) = 0 or {ret_b
= !ret_b; goto L_low(v);} if flip(v) = 1, and
B11 . . . B1h (B21 . . . B2l) are generated by the recur-
sive call Translatedup(ρ, high(v),W) in line 14 (Trans-
late dup(ρ, low(v),W) in line 15). By induction hypothesis
and the above reasoning, if the execution starts at label
L_high(v) andret_b= b̄, then areturn ret_b; state-
ment is invoked in at mostO(p − 1) steps withret b =
f |xi=1(x). As for the else case, we have that starting from
L_low(v) with ret_b= b̄ (ret_b= ¯̄b) if flip(v) = 0
(flip(v) = 1), then areturn ret_b; statement is in-
voked in at mostO(p−1) steps withret b = f |xi=0(x). By
construction of blockB, starting from labelL_v, areturn
ret_b; statement is invoked in at mostO(p−1+1) = O(p)
steps withret b = xif |xi=1(x) + x̄if |xi=0(x) = f(x).
Finally, note that by induction hypothesish ≥ |Vhigh(v)|
and l ≥ |Vlow(v)|, thus we have thatk = 1 + h + l ≥
1 + |Vhigh(v)|+ |Vlow(v)| ≥ |Vv|.

Lemma 5 extends Lemma 4 by also considering nodes
sharing, thus stating correctness of functionGenerateCCode
of Algorithm 3 and functionTranslateof Algorithm 4.

Lemma 5. Let ρ = (V, V , 1, var, low, high, flip)
be a COBDD andv1, . . . , vr ∈ V be r nodes and
b1, . . . , br ∈ B be r flipping bits. Then lines 6–8 of function
GenerateCCode(ρ, v1, b1, . . . , vr, br) generate a sequence of
labeled C statementsB1 . . . Bk such thatk = | ∪ri=1 Vvi

|
and for all v ∈ ∪ri=1Vvi

: 1) the label L_v is in Bj for
somej and 2) starting an execution from labelL_v with
∀j ∈ [n] x[j − 1]= xj and ret_b= b̄, if Jv, bK = fv,b
then areturn ret_b; statement is invoked in at most
O(p) steps withret b = fv,b(x) and p = height(w).

Proof: We begin by proving thatk = | ∪ri=1 Vvi
|.

To this aim, we prove that for each nodev ∈ ∪ri=1Vvi
,

a unique blockBv is generated. This follows by how the
nodes setW is managed by functionTranslatein lines 1–3

of Algorithm 4 and by functionGenerateCCodein lines 6–
8 of Algorithm 3. In fact, functionTranslate, when called
on parametersρ, v,W , returns a setW ′ ⊇W , and function
GenerateCCodecalls Translateby always passing theW
resulting by the previous call. Since a block is generated for
nodev only if v is not in W , and v is added toW only
when a block is generated for nodev, this proves this part
of the lemma.

As for correctness, we prove this lemma by induction on
m, being m the number of times that thereturn W;
statement in line 1 of Algorithm 4 is executed. As base of the
induction, letm = 1 and letρ, v,W be the parameters of the
recursive call executing the firstreturn W; statement.
Then, by construction of functionTranslate, v has been
added toW in some previous recursive call with parameters
ρ, v, W̃ . In this previous recursive call, a blockBv with
label L_v has been generated. Moreover, for this previous
recursive call, thus for parametersρ, v, W̃ , we are in the
hypothesis of Lemma 4, which implies that the induction
base is proved.

Suppose now that the thesis holds for the firstm exe-
cutions of thereturn W; statement in line 1 of Algo-
rithm 4. Then, by construction of functionTranslate, v has
been added toW in some previous recursive call with pa-
rametersρ, v, W̃ . In this previous recursive call, a blockBv

with labelL_v has been generated. Letw1,W1, . . . , wm,Wm,
be such that them recursive calls executing thereturn
W; statement have parametersρ, vi,Wi (note that they are
not necessarily distinct). By induction hypothesis, for all i ∈
[m] starting from labelL_wi with ∀j ∈ [n] x[j − 1]= xj

andret_b= b̄, a return ret_b; statement is invoked
in at mostO(p) steps withret b = fwi,b(x). By Lemma 4
and its proof, the same holds for allv ∈ Vv \{w1, . . . , wm},
thus it holds for allv ∈ Vv.

Finally, Theorem 6 states and proves correctness for func-
tion Synthesizeof Algorithm 1.

Theorem 6. Let ρ = (V, V , 1, var, low, high, flip) be a
COBDD with V = X ·∪U , v ∈ V be a node,b ∈ B be a
boolean. LetJv, bK = K(x,u), r = |U| and n = |X |. Then
function Synthesize(ρ, v, b) generates a C functionvoid
K(int *x, int *u) with the following property: for all
x ∈ Dom(K), if before a call toK ∀i ∈ [n] x[i − 1]=
xi, and after the call toK ∀i ∈ [r] u[i − 1]= ui, then
K(x,u) = 1.

Furthermore, functionK has WCET
∑r

i=1 O(height(vi)),
being v1, . . . , vr the nodes output by functionSolveFunc-
tionalEq.

Proof: Let x ∈ Dom(K) (i.e., ∃u K(x,u) = 1) and
suppose that for allj ∈ [n] x[j − 1]= xj . By lines 9–
11 of Algorithm 3, for all i ∈ [r], u[i − 1] will take
the value returned byK_bits(x, i). In turn, by lines 3
and 4 of Algorithm 3, eachK_bits(x, i) setsret_b

R

+vO
L

iD

Vi

Vi−1

Vj

V1

Iui

Iui−1

Iuj

+vui ui

D0

D1

Dj

Di−1

iL rL

+vC C

rCiC

+vuj

ui−1

uj

+vD

...

...

Iu
1

+vD
1

+vDj

+vui−1 +vDi−1

+vu
1 u1

Figure 4. Multi-input Buck DC-DC converter.

to b̄i and makes a jump to labelL_vi. By Lemma 3 and by
construction ofSynthesize, such b1, . . . , br and v1, . . . , vr
are such that thatJv1, b1K = f1(x), . . . , Jvr, brK = fr(x)
and K(x, f1(x), . . . , fr(x)) = 1. By Lemma 5, the se-
quence of callsK_bits(x, 1), . . . , K_bits(x, r)
will indeed return, in at most

∑r
j=1 O(height(vi)) steps,

f1(x), . . . , fr(x).

Corollary 7. Let ρ = (V, V , 1, var, low, high, flip) be a
COBDD with V = X ·∪U , v ∈ V be a node,b ∈ B be a
boolean. LetJv, bK = K(x,u), r = |U| and n = |X |. Then
the C functionK output by functionSynthesize(ρ, v, b) has
WCETO(rn).

Proof: The corollary immediately follows from Theo-
rem 6 and from the fact that, for allv ∈ V , height(v) ≤ n.

VIII. E XPERIMENTAL RESULTS

We implemented our synthesis algorithm in C program-
ming language, using the CUDD (Colorado University De-
cision Diagram [19]) package for OBDD based computa-
tions and BLIF (Berkeley Logic Interchange Format [20])
files to represent input OBDDs. We name the resulting tool
KSS (Kontrol Software Synthesizer). KSS is part of a more
general tool named QKS (Quantized feedback Kontrol Syn-
thesizer[6]).

A. Experimental Settings

We present experimental results obtained by using KSS
on given COBDDsρ1, . . . , ρ5 such that for alli ∈ [5] ρi
represents the mgoKi(x,u) for a buck DC/DC converter
with i inputs.

Themulti-inputbuck DC-DC converter [21] in Figure 4 is
a mixed-mode analog circuit converting the DC input voltage
(Vi in Figure 4) to a desired DC output voltage (vO in
Figure 4). As an example, buck DC-DC converters are used
off-chip to scale down the typical laptop battery voltage (12-
24) to the just few volts needed by the laptop processor (e.g.,
see [22]) as well as on-chip to supportDynamic Voltage
and Frequency Scaling(DVFS) in multicore processors (e.g.,
see [23]). Because of its widespread use, control schemas

Table I
KSS PERFORMACES

r CPU MEM |K| |Funsh| |Sw| %

1 3.0e-02 1.0e+08 12137 2646 2646 0.0e+00
2 1.1e-01 1.3e+08 25848 5827 5076 1.3e+01
3 1.7e-01 1.8e+08 36430 10346 8606 1.7e+01
4 2.5e-01 2.4e+08 46551 15004 12285 1.8e+01
5 3.6e-01 3.3e+08 65835 21031 16768 2.0e+01

for buck DC-DC converters have been widely studied. The
typical software based approach (e.g., see [22]) is to control
the switchesu1, . . . , ui in Figure 4 (typically implemented
with a MOSFET, i.e., a metal-oxide-semiconductor field-
effect transistor [24]) with a microcontroller.

In the following experiments, we fixn = |x| = 20 and
we have thatri = |u| = i. Finally, Ki is an intermediate
output of the QKS tool described in [6].

For eachρi, we run KSS so as to computeSynthesize(ρi,
vi, bi) (see Algorithm 1), beingJvi, biK = Ki(x,u). In the
following, we will call 〈v1i, b1i, . . . , vii, bii〉, with vji ∈
Vi, bji ∈ B, the output of functionSolveFunctionalEq(ρi, vi,
bi). Moreover, we callf1i, . . . , fii : Bn → B the i boolean
functions such thatJvji, bjiK = fji(x). All our experiments
have been carried out on a 3.0 GHz Intel hyperthreaded
Quad Core Linux PC with 8 GB of RAM.

B. KSS Performance

In this section, we will show the performance (in terms
of computation time, memory, and output size) of the al-
gorithms discussed in Section VI. Table I show our experi-
mental results. Thei-th row in Table I corresponds to exper-
iments running KSS so as to computeSynthesize(ρi, vi, bi).
Columns in Table I have the following meaning. Columnr
shows the number of action variables|u| (note that|x| = 20
on all our experiments). ColumnCPU shows the computa-
tion time of KSS (in secs). ColumnMEM shows the memory
usage for KSS (in bytes). Column|K| shows the number
of nodes of the COBDD representation forKi(x,u), i.e.,
|Vvi
|. Column |Funsh| shows the number of nodes of the

COBDD representations off1i, . . . , fii, without consider-
ing nodes sharing among such COBDDs. Note that we do
consider nodes sharing inside eachfji separately. That is,
|Funsh| =

∑i
j=1 |Vvji

| is the size of a trivial implemen-
tation of f1i, . . . , fii in which eachfji is implemented by
a stand-alone C function. Column|Sw| shows the size of
the control software generated by KSS, i.e., the number of
nodes of the COBDD representationsf1i, . . . , fii, consid-
ering also nodes sharing among such COBDDs. That is,
|Sw| = |∪ij=1Vvji

| is the number of C code blocks generated
by lines 6–8 of functionGenerateCCodein Algorithm 3.
Finally, Column% shows the gain percentage we obtain by
considering nodes sharing among COBDD representations

for f1i, . . . , fii, i.e., (1− |Sw|
|Funsh|

)100.
From Table I we can see that, in less than 1 second

and within 350 MB of RAM we are able to synthesize the
control software for the multi-input buck withr = 5 action
variables, starting from a COBDD representation ofK with
about6.6× 104 nodes. The control software we synthesize
in such a case has about1.7 × 104 lines of code, whilst
a control software not taking into account COBDD nodes
sharing would have had about2.1×104 lines of code. Thus,
we obtain a20% gain towards a trivial implementation.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm which, starting
from a boolean relationK representing the set of implemen-
tations meeting the given system specifications, generatesa
correct-by-construction C code implementingK. This en-
tails finding boolean functionsF such thatK(x, F (x)) = 1
holds, and then implement suchF . WCET for the generated
control software is linear linear innr, beingr the number
of functions inF and n = |x|. Furthermore, we formally
proved that our algorithm is correct.

We implemented our algorithm in a tool named KSS.
Given our algorithm properties explained above, by using
KSS it is possible to synthesize correct-by-construction
control software, provided thatK is provably correct with
respect to initial formal specifications. This is the case in[6],
thus this methodology, e.g., allows to synthesize correct-
by-construction control software starting from formal spec-
ifications for DTLHSs. We have shown feasibility of our
proposed approach by presenting experimental results on
using it to synthesize C controllers for a multi-input buck
DC-DC converter.

The WCET of the resulting control software may be too
high for some systems in whichnr is high, or for which
the control software has to provide actions with an high
frequency. In order to speed-up the WCET, a natural possible
future research direction is to investigate how to parallelize
the generated control software.

ACKNOWLEDGMENTS

This work has received funding both from MIUR project
TRAMP and the FP7/2007-2013 project ULISSE (grant agree-
ment no218815).

REFERENCES

[1] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “From boolean
relations to control software,” inICSEA 2011, pp. 528–533.

[2] R. Bryant, “Graph-based algorithms for boolean function
manipulation,”IEEE Trans. on Computers, vol. C-35, no. 8,
1986, pp. 677–691.

[3] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive
paradigm to solve boolean relations,”IEEE Trans. on Com-
puters, vol. 58, no. 4, 2009, pp. 512–527.

[4] R. Wille and R. Drechsler, “Bdd-based synthesis of reversible
logic for large functions,” inDAC 2009, pp. 270–275.

[5] E. Tronci, “Automatic synthesis of controllers from formal
specifications,” inICFEM 1998, pp. 134–143.

[6] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of
quantized feedback control software for discrete time linear
hybrid systems,” inCAV 2010, ser. LNCS 6174, pp. 180–195.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Check-
ing. The MIT Press, 1999.

[8] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Quantized
feedback control software synthesis from system level for-
mal specifications for buck dc/dc converters,”CoRR, vol.
abs/1105.5640, 2011.

[9] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
A. Sangiovanni-Vincentelli, E. Sentovich, and K. Suzuki,
“Synthesis of software programs for embedded control ap-
plications,” IEEE Trans. CAD, vol. 18, 1995, pp. 834–849.

[10] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Formal
synthesis of embedded control software: Application to ve-
hicle management systems,” inAIAA Infotech@Aerospace,
2011.

[11] A. Cimatti, M. Roveri, and P. Traverso, “Strong planning
in non-deterministic domains via model checking,” inAIPS
1998, pp. 36–43.

[12] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci,
“On model based synthesis of embedded control software,”
in EMSOFT 2012, pp. 227–236.

[13] A. Pnueli and R. Rosner, “On the synthesis of an asyn-
chronous reactive module,” inICALP 1989, pp. 652–671.

[14] A. Girault andÉ. Rutten, “Automating the addition of fault
tolerance with discrete controller synthesis,”Formal Methods
in System Design, vol. 35, no. 2, 2009, pp. 190–225.

[15] ——, “From boolean functional equations to control soft-
ware,” CoRR, vol. abs/1106.0468, 2011.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[17] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
implementation of a bdd package,” inDAC 1990, pp. 40–45.

[18] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision
diagram with attributed edges for efficient boolean function
manipulation,” inDAC 1990, pp. 52–57.

[19] “CUDD Web Page,” http://vlsi.colorado.edu/ fabio/CUDD,
last accessed 20th dec 2012

[20] “Berkeley logic interchange format (BLIF),“
bear.ces.cwru.edu/eecscad/sisblif.pdf, last accessed 20th
dec 2012.

[21] M. Rodriguez, P. Fernandez-Miaja, A. Rodriguez, and J. Se-
bastian, “A multiple-input digitally controlled buck converter
for envelope tracking applications in radiofrequency power
amplifiers,” IEEE Trans. on Power Electronics, vol. 25, no. 2,
2010, pp. 369–381.

[22] W.-C. So, C. Tse, and Y.-S. Lee, “Development of a fuzzy
logic controller for dc/dc converters: design, computer simu-
lation, and experimental evaluation,”IEEE Trans. on Power

Electronics, vol. 11, no. 1, 1996, pp. 24–32.

[23] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “En-
abling on-chip switching regulators for multi-core processors
using current staggering,” inASGI 2007.

[24] Y. Cheng and C. Hu,MOSFET Modeling and Bsim3 User’s
Guide. Kluwer Academic Publishers, 1999.

